Skip to main content

Permafrost in Transition

  • Chapter
  • First Online:
Thawing Permafrost

Abstract

Climate change results in physical changes in permafrost soils: active layer thickness, temperature, soil hydrology and abrupt thaw features in ice-rich soils. Abrupt thaw features create new landforms such as ponds, lakes and erosion phenomena. In this chapter, current observations of physical changes in permafrost soils are discussed, including their effect on the soil carbon cycle. For the carbon cycle changes, the results of observations and experimental studies are emphasized. First, the effects of soil warming without further geomorphological change is considered. The potential effect of self-amplifying soil warming by heat production from bacterial production is discussed. Next, the changes in geomorphological processes expressed by formation of thaw ponds, lakes and erosion features are considered. These contribute to an increase of CO2 and non-CO2 greenhouse gas emissions. Hydrological changes include the effects of permafrost thaw on the water cycle via groundwater flow and directly climate-driven changes in precipitation and evapotranspiration. These result in river discharge changes with effects on floodplains, and influence transport of carbon from permafrost regions to the Arctic Ocean. Soil hydrology changes – wetting or drying – induce changes in the pattern of greenhouse gas emissions of permafrost soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 21(12):4570–4587

    Google Scholar 

  • Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycles 26(2):GB2041. https://doi.org/10.1029/2011GB004237

    Article  Google Scholar 

  • Agafonov L, Strunk H, Nuber T (2004) Thermokarst dynamics in Western Siberia: insights from dendrochronological research. Palaeogeogr Palaeoclimatol Palaeoecol 209(1–4):183–196

    Article  Google Scholar 

  • Åkerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process 19(3):279–292

    Article  Google Scholar 

  • Arp CD, Jones BM, Urban FE, Grosse G (2011) Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol Process 25(15):2422–2438

    Google Scholar 

  • Arp CD, Jones BM, Lu Z, Whitman MS (2012) Shifting balance of thermokarst lake ice regimes across the Arctic coastal plain of northern Alaska. Geophys Res Lett 39(16):L16503. https://doi.org/10.1029/2012GL052518

    Article  Google Scholar 

  • Arp CD, Jones BM, Grosse G, Bondurant AC, Romanovsky VE, Hinkel KM, Parsekian AD (2016) Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys Res Lett 43(12):6358–6365

    Article  Google Scholar 

  • Audry S, Pokrovsky O, Shirokova L, Kirpotin S, Dupré B (2011) Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments. Biogeosciences 8(11):3341–3358

    Article  Google Scholar 

  • Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci 4(7):444

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598

    Article  Google Scholar 

  • Benner R, Benitez-Nelson B, Kaiser K, Amon RM (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys Res Lett 31(5):L05305. https://doi.org/10.1029/2003GL019251

    Article  Google Scholar 

  • Bense V, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36(22):L22041. https://doi.org/10.1029/2009GL039225

    Article  Google Scholar 

  • Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31(21):L21502. https://doi.org/10.1029/2004GL021277

    Article  Google Scholar 

  • Bintanja R, Selten F (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509(7501):479–483

    Article  Google Scholar 

  • Biskaborn BK, Herzschuh U, Bolshiyanov DY, Schwamborn G, Diekmann B (2013) Thermokarst processes and depositional events in a tundra lake, northeastern Siberia. Permafr Periglac Process 24(3):160–174

    Article  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A (2019) Permafrost is warming at a global scale. Nat Commun 10(1):264

    Article  Google Scholar 

  • Blok D, Heijmans MM, Schaepman-Strub G, Kononov A, Maximov T, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16(4):1296–1305

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14(7):1055–1065. https://doi.org/10.1007/s10021-011-9463-5

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113(G3). https://doi.org/10.1029/2007jg000540

  • Boike J, Georgi C, Kirilin G, Muster S, Abramova K, Fedorova I, Chetverova A, Grigoriev M, Bornemann N, Langer M (2015) Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia). Biogeosciences 12(20):5941–5965. https://doi.org/10.5194/bg-12-5941-2015

    Article  Google Scholar 

  • Boike J, Grau T, Heim B, Günther F, Langer M, Muster S, Gouttevin I, Lange S (2016) Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: wetting, drying, and fires. Glob Planet Chang 139:116–127

    Article  Google Scholar 

  • Borge AF, Westermann S, Solheim I, Etzelmüller B (2017) Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11(1):1–16. https://doi.org/10.5194/tc-11-1-2017

    Article  Google Scholar 

  • Boucher É, Ouarda TB, Bégin Y, Nicault A (2011) Spring flood reconstruction from continuous and discrete tree ring series. Water Resour Res 47(7):W07516. https://doi.org/10.1029/2010WR010131

    Article  Google Scholar 

  • Bowling LC, Lettenmaier DP (2010) Modeling the effects of lakes and wetlands on the water balance of Arctic environments. J Hydrometeorol 11(2):276–295

    Article  Google Scholar 

  • Breton J, Vallieres C, Laurion I (2009) Limnological properties of permafrost thaw ponds in northeastern Canada. Can J Fish Aquat Sci 66(10):1635–1648

    Article  Google Scholar 

  • Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J, Mernild S, Prowse T, Semenova O, Stuefer SL, Woo MK (2016) Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J Geophys Res Biogeo 121(3):621–649

    Article  Google Scholar 

  • Brouchkov A, Fukuda M, Fedorov A, Konstantinov P, Iwahana G (2004) Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafr Periglac Process 15(1):81–87. https://doi.org/10.1002/ppp.473

    Article  Google Scholar 

  • Brown J, Hinkel KM, Nelson F (2000) The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr 24(3):166–258

    Article  Google Scholar 

  • Brutsaert W, Hiyama T (2012) The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia. J Geophys Res Atmos 117(D22):D22110. https://doi.org/10.1029/2012JD018344

    Article  Google Scholar 

  • Bulygina O, Groisman PY, Razuvaev VN, Korshunova NN (2011) Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett 6:04520. https://doi.org/10.1088/1748-9326/6/4/045204

    Article  Google Scholar 

  • Burn C (1997) Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can J Earth Sci 34(7):912–925

    Article  Google Scholar 

  • Burn C (2000) The thermal regime of a retrogressive thaw slump near Mayo, Yukon territory. Can J Earth Sci 37(7):967–981

    Article  Google Scholar 

  • Burn C, Friele P (1989) Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo. Yukon Territory Arctic:31–40

    Google Scholar 

  • Burn CR, Nelson FE (2006) Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater. Geophysical Research Letters 33 (21). https://doi.org/10.1029/2006GL027077

  • Carstensen J, Weydmann A (2012) Tipping points in the Arctic: eyeballing or statistical significance? Ambio 41:34–43. https://doi.org/10.1007/s13280-011-0223-8

    Article  Google Scholar 

  • Chadburn S, Burke E, Essery R, Boike J, Langer M, Heikenfeld M, Cox P, Friedlingstein P (2015) An improved representation of physical permafrost dynamics in the JULES land-surface model. Geosci Model Dev 8(5):1493–1508

    Article  Google Scholar 

  • Christensen TR, Jonasson S, Callaghan TV, Havström M (1995) Spatial variation in high latitude methane flux-a transect across tundra environments in Siberia and the European Arctic. J Geophys Res Oceans D10:21035–21045

    Article  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30(7). https://doi.org/10.1029/2002gl016848

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627

    Article  Google Scholar 

  • Connon RF, Quinton WL, Craig JR, Hayashi M (2014) Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol Process 28(14):4163–4178

    Article  Google Scholar 

  • Connon R, Devoie É, Hayashi M, Veness T, Quinton W (2018) The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. J Geophys Res Earth 123(2):281–297

    Article  Google Scholar 

  • Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Chang Biol 0(0):051115033519001. https://doi.org/10.1111/j.1365-2486.2005.01023.x

    Article  Google Scholar 

  • Cory RM, Crump BC, Dobkowski JA, Kling GW (2013) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc Natl Acad Sci 110(9):3429–3434

    Article  Google Scholar 

  • Costard F, Gautier E, Brunstein D, Hammadi J, Fedorov A, Yang D, Dupeyrat L (2007) Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys Res Lett 34(14):L14501. https://doi.org/10.1029/2007GL030212

    Article  Google Scholar 

  • Denfeld BAFK, Sobczak WV, Mann PJ, Holmes RM (2013) Summer CO2 evasion from streams and rivers in the Kolyma River basin, North-East Siberia. Polar Res 32(1):19704

    Article  Google Scholar 

  • Dentener F (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. ORNL DAAC, Oak Ridge. https://doi.org/10.3334/ORNLDAAC/830

    Book  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RS, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460(7255):616

    Article  Google Scholar 

  • Drake TW, Wickland KP, Spencer RG, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci 112(45):13946–13951

    Article  Google Scholar 

  • Dutta K, Schuur E, Neff J, Zimov S (2006) Potential carbon release from permafrost soils of northeastern Siberia. Glob Chang Biol 12(12):2336–2351

    Article  Google Scholar 

  • Elberling B, Christiansen HH, Hansen BU (2010) High nitrous oxide production from thawing permafrost. Nat Geosci 3(5):332

    Article  Google Scholar 

  • Elberling B, Michelsen A, Schädel C, Schuur EA, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nat Clim Chang 3(10):890

    Article  Google Scholar 

  • Elmendorf SC, Henry GH, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JH, Day TA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15(2):164–175

    Article  Google Scholar 

  • Emmerton CA, Lesack LF, Marsh P (2007) Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour Res 43(5):W05419. https://doi.org/10.1029/2006WR005139

    Article  Google Scholar 

  • Eugster W, Rouse WR, Pielke RA Sr, Mcfadden JP, Baldocchi DD, Kittel TG, Chapin FS, Liston GE, Vidale PL, Vaganov E (2000) Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob Chang Biol 6(S1):84–115

    Article  Google Scholar 

  • Fedorov AN, Konstantinov PY (2009) Response of permafrost landscapes of central Yakutia to current changes of climate, and anthropogenic impacts. Geogr Nat Resour 30(2):146–150

    Article  Google Scholar 

  • Fedorov A, Gavriliev P, Konstantinov P, Hiyama T, Iijima Y, Iwahana G (2014) Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7(2):188–196

    Article  Google Scholar 

  • Fedotov A, Phedorin M, Suvorov A, Melgunov M, Khodzher T (2012) Permafrost thawing inferred from Arctic lake sediment of the Taimyr peninsula, East Siberia, Russia. Int J Environ Stud 69(1):7–19

    Article  Google Scholar 

  • Feng X, Vonk JE, Van Dongen BE, Gustafsson Ö, Semiletov IP, Dudarev OV, Wang Z, Montluçon DB, Wacker L, Eglinton TI (2013) Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc Natl Acad Sci 110(35):14168–14173

    Article  Google Scholar 

  • Fisher JP, Estop-Aragonés C, Thierry A, Charman DJ, Wolfe SA, Hartley IP, Murton JB, Williams M, Phoenix GK (2016) The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob Chang Biol 22(9):3127–3140

    Article  Google Scholar 

  • Fortier D, Allard M, Shur Y (2007) Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic archipelago. Permafr Periglac Process 18(3):229–243

    Article  Google Scholar 

  • Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, Van der Velde M, Vicca S, Babst F (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21(8):2861–2880

    Article  Google Scholar 

  • French HM (2018) The periglacial environment. Wiley, Oxford, 515 p

    Google Scholar 

  • French H, Shur Y (2010) The principles of cryostratigraphy. Earth Sci Rev 101(3–4):190–206

    Article  Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23(1):169–182

    Article  Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast west Siberian peatlands by 2100. Geophys Res Lett 32(9):L09401. https://doi.org/10.1029/2004GL022025

    Article  Google Scholar 

  • Frey KE, McClelland JW, Holmes RM, Smith LC (2007a) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res Biogeosci 112(G4):G04S58. https://doi.org/10.1029/2006JG000369

    Article  Google Scholar 

  • Frey KE, Siegel DI, Smith LC (2007b) Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour Res 43(3):W03406. https://doi.org/10.1029/2006WR004902

    Article  Google Scholar 

  • Froese DG, Westgate JA, Reyes AV, Enkin RJ, Preece SJ (2008) Ancient permafrost and a future, warmer Arctic. Science 321(5896):1648–1648

    Article  Google Scholar 

  • Göckede M, Kittler F, Kwon MJ, Burjack I, Heimann M, Kolle O, Zimov N, Zimov S (2017) Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure. Cryosphere 11(6):2975–2996

    Article  Google Scholar 

  • Gooseff MN, Balser A, Bowden WB, Jones JB (2009) Effects of hillslope thermokarst in northern Alaska. EOS Trans Am Geophys Union 90(4):29–30

    Article  Google Scholar 

  • Groisman PY, Sherstyukov BG, Razuvaev VN, Knight RW, Enloe JG, Stroumentova NS, Whitfield PH, Førland E, Hannsen-Bauer I, Tuomenvirta H (2007) Potential forest fire danger over northern Eurasia: changes during the 20th century. Glob Planet Chang 56(3–4):371–386

    Article  Google Scholar 

  • Grosse G, Romanovsky V, Walter K, Morgenstern A, Lantuit H, Zimov S (2008) Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia. In: 9th international conference on permafrost, Fairbanks, 2008. Proceedings 9th international conference on Permafrost, pp 551–556

    Google Scholar 

  • Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116. https://doi.org/10.1029/2010jg001507

  • Grosse G, Jones B, Arp C (2013) Thermokarst lakes, drainage, and drained basins. In: Shroder J, Giardino R, Harbor J (eds) Glacial and periglacial geomorphology, Treatise on geomorphology, vol 8, pp 325–353. https://doi.org/10.1016/b978-0-12-374739-6.00216-5

    Chapter  Google Scholar 

  • Guo L, Macdonald RW (2006) Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob Biogeochem Cycles 20(2):GB2011. https://doi.org/10.1029/2005GB002593

    Article  Google Scholar 

  • Guo L, Ping CL, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34(13):L13603. https://doi.org/10.1029/2007GL030689

    Article  Google Scholar 

  • Gustafsson Ö, van Dongen BE, Vonk JE, Dudarev OV, Semiletov IP (2011) Widespread release of old carbon across the Siberian Arctic echoed by its large rivers. Biogeosciences 8(6):1737–1743. https://doi.org/10.5194/bg-8-1737-2011

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis, vol 2. Springer, Dordrecht, 308 p

    Book  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049

    Article  Google Scholar 

  • Hicks Pries CE, Schuur EA, Crummer KG (2013a) Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using delta(13) C and (14) C. Glob Chang Biol 19(2):649–661. https://doi.org/10.1111/gcb.12058

    Article  Google Scholar 

  • Hicks Pries CE, Schuur E, Vogel JG, Natali SM (2013b) Moisture drives surface decomposition in thawing tundra. J Geophys Res Biogeo 118(3):1133–1143

    Article  Google Scholar 

  • Hicks Pries CE, van Logtestijn RS, Schuur EA, Natali SM, Cornelissen JH, Aerts R, Dorrepaal E (2015) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob Chang Biol 21(12):4508–4519. https://doi.org/10.1111/gcb.13032

    Article  Google Scholar 

  • Hilton RG, Galy V, Gaillardet J, Dellinger M, Bryant C, O’regan M, Gröcke DR, Coxall H, Bouchez J, Calmels D (2015) Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524(7563):84

    Article  Google Scholar 

  • Hinkel KM, Hurd JK Jr (2006) Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA. Arct Antarct Alp Res 38(4):530–539

    Article  Google Scholar 

  • Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X (2003) Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct Antarct Alp Res 35(3):291–300

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Chang 72(3):251–298

    Article  Google Scholar 

  • Hinzman LD, Deal CJ, McGuire AD, Mernild SH, Polyakov IV, Walsh JE (2013) Trajectory of the Arctic as an integrated system. Ecol Appl 23(8):1837–1868

    Article  Google Scholar 

  • Hollesen J, Elberling B, Jansson P-E (2011) Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob Chang Biol 17(2):911–926

    Article  Google Scholar 

  • Holmes R, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35(3):L03402. https://doi.org/10.1029/2007GL032837

    Article  Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuar Coasts 35(2):369–382

    Article  Google Scholar 

  • Holmes RM, Coe MT, Fiske GJ, Gurtovaya T, McClelland JW, Shiklomanov AI, Spencer RG, Tank SE, Zhulidov AV (2013) Climate change impacts on the hydrology and biogeochemistry of Arctic rivers. In: Goldman, CR, Kumagai, M, Robarts, RD (eds) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. Wiley, Somerset, pp 1–26. doi:https://doi.org/10.1002/9781118470596

    Google Scholar 

  • Holmes R, Shiklomanov, AI, Suslova, A, Tretiakov, M, McClelland, JW, Spencer, RGM, Tank, SE (2018) River discharge. Arctic report card 2018. NOAA. https://arctic.noaa.gov/Report-Card/Report-Card-2018

  • Hopkins D, Kidd J (1988) Thaw lake sediments and sedimentary environments. In: Proceedings of the 5th international permafrost conference, pp 790–795

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

    Google Scholar 

  • Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, Central Lena River basin, Russia. Permafr Periglac Process 21(1):30–41. https://doi.org/10.1002/ppp.662

    Article  Google Scholar 

  • Iijima Y, Ohta T, Kotani A, Fedorov AN, Kodama Y, Maximov TC (2014) Sap flow changes in relation to permafrost degradation under increasing precipitation in an eastern Siberian larch forest. Ecohydrology 7(2):177–187

    Article  Google Scholar 

  • Iijima Y, Nakamura T, Park H, Tachibana Y, Fedorov AN (2016) Enhancement of Arctic storm activity in relation to permafrost degradation in eastern Siberia. Int J Climatol 36(13):4265–4275

    Article  Google Scholar 

  • Iwahana G, Machimura T, Kobayashi Y, Fedorov AN, Konstantinov PY, Fukuda M (2005) Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia. J Geophys Res Biogeo 110(G2):G02004. https://doi.org/10.1029/2005JG000039

    Article  Google Scholar 

  • Iwahana G, Takano S, Petrov RE, Tei S, Shingubara R, Maximov TC, Fedorov AN, Desyatkin AR, Nikolaev AN, Desyatkin RV (2014) Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Pol Sci 8(2):96–113

    Article  Google Scholar 

  • Jeffries MO, Zhang T, Frey K, Kozlenko N (1999) Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. J Glaciol 45(150):315–324

    Article  Google Scholar 

  • Jepsen SM, Voss CI, Walvoord MA, Minsley BJ, Rover J (2013) Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys Res Lett 40(5):882–887

    Article  Google Scholar 

  • Johansson M, Callaghan TV, Bosiö J, Åkerman HJ, Jackowicz-Korczynski M, Christensen TR (2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ Res Lett 8(3):035025. https://doi.org/10.1088/1748-9326/8/3/035025

    Article  Google Scholar 

  • Jones J Jr, Petrone KC, Finlay JC, Hinzman LD, Bolton WR (2005) Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophys Res Lett 32(2):L02401. https://doi.org/10.1029/2004GL021734

    Article  Google Scholar 

  • Jones BM, Grosse G, Arp C, Jones M, Walter Anthony K, Romanovsky V (2011) Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward peninsula, Alaska. J Geophys Res Biogeosci 116(G2):G00M03. https://doi.org/10.1029/2011JG001666

  • Jones MC, Grosse G, Jones BM, Walter Anthony K (2012) Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J Geophys Res Biogeo 117(G2)

    Article  Google Scholar 

  • Jorgenson MT, Shur Y (2007) Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J Geophys Res Earth Surf 112(F2):F02S17. https://doi.org/10.1029/2006JF000531

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warmingclimate in Central Alaska. Clim Chang 48(4):551–579

    Article  Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(2):L02503. https://doi.org/10.1029/2005gl024960

    Article  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EA, Kanevskiy M, Marchenko S (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40(7):1219–1236

    Article  Google Scholar 

  • Jorgenson MT, Harden J, Kanevskiy M, O’Donnell J, Wickland K, Ewing S, Manies K, Zhuang Q, Shur Y, Striegl R (2013) Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ Res Lett 8(3):035017

    Article  Google Scholar 

  • Jorgenson NT, Kanevsky M, Shur Y, Moskalenko N, Brown DRN, Wickland K, Striegl R, Koch J (2015) Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J Geophys Res Earth Surf 120:2280–2297. https://doi.org/10.1002/2015JF003602

    Article  Google Scholar 

  • Karlsson J, Lyon S, Destouni G (2014) Temporal behavior of Lake size-distribution in a thawing permafrost landscape in Northwestern Siberia. Remote Sens 6(1):621–636. https://doi.org/10.3390/rs6010621

    Article  Google Scholar 

  • Katamura F, Fukuda M, Bosikov NP, Desyatkin RV, Nakamura T, Moriizumi J (2006) Thermokarst formation and vegetation dynamics inferred from a palynological study in Central Yakutia, Eastern Siberia, Russia. Arct Antarct Alp Res 38(4):561–570

    Article  Google Scholar 

  • Kattsov VM, Walsh JE, Chapman WL, Govorkova VA, Pavlova TV, Zhang X (2007) Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J Hydrometeorol 8(3):571–589

    Article  Google Scholar 

  • Kessler M, Plug LJ, Walter Anthony K (2012) Simulating the decadal-to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J Geophys Res Biogeosci 117(G2):G00M06. https://doi.org/10.1029/2011JG001796

    Article  Google Scholar 

  • Keuper F, Van Bodegom PM, Dorrepaal E, Weedon JT, Van Hal J, Van Logtestijn RS, Aerts R (2012a) A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob Chang Biol 18(6):1998–2007

    Article  Google Scholar 

  • Keuper F, Parmentier FJ, Blok D, van Bodegom PM, Dorrepaal E, van Hal JR, van Logtestijn RS, Aerts R (2012b) Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra. Ambio 41(Suppl 3):269–280. https://doi.org/10.1007/s13280-012-0305-2

    Article  Google Scholar 

  • Kharin VV, Zwiers F, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119(2):345–357

    Article  Google Scholar 

  • Khvorostyanov D, Krinner G, Ciais P, Heimann M, Zimov S (2008a) Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B: Chem Phys Meteorol 60(2):250–264

    Article  Google Scholar 

  • Khvorostyanov D, Ciais P, Krinner G, Zimov S, Corradi C, Guggenberger G (2008b) Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus B Chem Phys Meteorol 60(2):265–275

    Article  Google Scholar 

  • Kirpotin SN, Polishchuk Y, Bryksina N (2009) Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. Int J Environ Stud 66(4):423–431. https://doi.org/10.1080/00207230902758287

    Article  Google Scholar 

  • Kirpotin S, Polishchuk Y, Bryksina N, Sugaipova A, Kouraev A, Zakharova E, Pokrovsky OS, Shirokova L, Kolmakova M, Manassypov R, Dupre B (2011) West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle. Int J Environ Stud 68(5):603–623. https://doi.org/10.1080/00207233.2011.593901

    Article  Google Scholar 

  • Kittler F, Heimann M, Kolle O, Zimov N, Zimov S, Göckede M (2017) Long-term drainage reduces CO2 uptake and CH4 emissions in a Siberian permafrost ecosystem. Glob Biogeochem Cycles 31:1704–1717. https://doi.org/10.1002/2017GB005774

    Article  Google Scholar 

  • Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer EM (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob Chang Biol 19(4):1160–1172

    Article  Google Scholar 

  • Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M (2018) Methane production as key to the greenhouse gas budget of thawing permafrost. Nat Clim Chang 8(4):309

    Article  Google Scholar 

  • Koch JC, Gurney K, Wipfli MS (2014) Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds. Permafr Periglac Process 25(2):79–93

    Article  Google Scholar 

  • Koch J, Jorgenson M, Wickland K, Kanevskiy M, Striegl R (2018) Ice wedge degradation and stabilization impacts water budgets and nutrient cycling in arctic trough ponds. J Geophys Res Biogeo 123:2604–2616. https://doi.org/10.1029/2018JG004528

    Article  Google Scholar 

  • Kokelj S, Jenkins R, Milburn D, Burn C, Snow N (2005) The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories, Canada. Permafr Periglac Process 16(4):343–353

    Article  Google Scholar 

  • Kokelj SV, Lantz TC, Kanigan J, Smith S, Coutts R (2009) Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada. Permafr Periglac Process 20(2):173–184

    Article  Google Scholar 

  • Kokelj SV, Lantz TC, Tunnicliffe J, Segal R, Lacelle D (2017) Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45(4):371–374

    Article  Google Scholar 

  • Kravtsova V, Bystrova A (2009) Changes in thermokarst lake sizes in different regions of Russia for the last 30 years (Изменение размеров термокарстовых озер в различных районах россии за последние 30 лет). Kriosfera Zemli (Earth Cryosphere) 13:16–26

    Google Scholar 

  • Kurylyk BL, Hayashi M, Quinton WL, McKenzie JM, Voss CI (2016) Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour Res 52(2):1286–1305

    Article  Google Scholar 

  • Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13(14):4219–4235. https://doi.org/10.5194/bg-13-4219-2016

    Article  Google Scholar 

  • Kwon MJ, Beulig F, Ilie I, Wildner M, Kusel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Gockede M (2017) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob Chang Biol 23(6):2396–2412. https://doi.org/10.1111/gcb.13558

    Article  Google Scholar 

  • Labrecque S, Lacelle D, Duguay CR, Lauriol B, Hawkings J (2009) Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: Remote sensing, numerical modeling, and stable isotope analysis. Arctic 62(2):225–238

    Article  Google Scholar 

  • Lacelle D, Bjornson J, Lauriol B (2010) Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada. Permafr Periglac Process 21(1):1–15

    Article  Google Scholar 

  • Lamoureux SF Lafrenière MJ (2014) Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances. Environ Res Lett 9(5):045002. https://doi.org/10.1088/1748-9326/9/4/045002

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S, Piel K, Boike J (2011) The surface energy balance of a polygonal tundra site in northern Siberia-part 1: Spring to fall. Cryosphere 5(1):151

    Article  Google Scholar 

  • Langer M, Westermann S, Walter Anthony K, Wischnewski K, Boike J (2015) Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta. Biogeosciences 12(4):977–990. https://doi.org/10.5194/bg-12-977-2015

    Article  Google Scholar 

  • Lantuit H, Pollard W (2008) Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon territory, Canada. Geomorphology 95(1–2):84–102

    Article  Google Scholar 

  • Lantz TC, Kokelj SV (2008) Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, NWT, Canada. Geophys Res Lett 35(6):L06502. https://doi.org/10.1029/2007GL032433

    Article  Google Scholar 

  • Lara MJ, McGuire AD, Euskirchen ES, Tweedie CE, Hinkel KM, Skurikhin AN, Romanovsky VE, Grosse G, Bolton WR, Genet H (2015) Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob Chang Biol 21(4):1634–1651. https://doi.org/10.1111/gcb.12757

    Article  Google Scholar 

  • Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55(1):115–133

    Article  Google Scholar 

  • Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 35(11):L11506. https://doi.org/10.1029/2008GL033985

  • Leibman M, Kizakov A, Sulerzhitsky L, Zaretskaia N (2003) Dynamics of landslide slopes and their development on Yamal Peninsula. In: Permafrost (ed) Proceedings of the 8th international conference on permafrost. Swets and Zeitlinger, Lisse, pp 651–656

    Google Scholar 

  • Leibman M, Khomutov A, Kizyakov A (2014) Cryogenic landslides in the West-Siberian plain of Russia: classification, mechanisms, and landforms. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 143–162

    Google Scholar 

  • Lenz J, Wetterich S, Jones BM, Meyer H, Bobrov A, Grosse G (2016) Evidence of multiple thermokarst lake generations from an 11 800-year-old permafrost core on the northern S eward Peninsula, Alaska. Boreas 45(4):584–603

    Article  Google Scholar 

  • Lesack LF, Marsh P, Hicks FE, Forbes DL (2013) Timing, duration, and magnitude of peak annual water-levels during ice breakup in the Mackenzie Delta and the role of river discharge. Water Resour Res 49(12):8234–8249

    Article  Google Scholar 

  • Lesack LF, Marsh P, Hicks FE, Forbes DL (2014) Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys Res Lett 41(5):1560–1567

    Article  Google Scholar 

  • Lewkowicz AG (1987) Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories. Can J Earth Sci 24(6):1077–1085

    Article  Google Scholar 

  • Lewkowicz AG, Harris C (2005) Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Permafr Periglac Process 16(1):115–130

    Article  Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun 10(1):1329. https://doi.org/10.1038/s41467-019-09314-7

    Article  Google Scholar 

  • Li B, Heijmans MM, Blok D, Wang P, Karsanaev SV, Maximov TC, van Huissteden J, Berendse F (2017a) Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant Soil 420(1–2):147–162

    Google Scholar 

  • Li B, Heijmans, MMPD, Limpens J, Gallagher A, Van Huissteden J, Maximov TC, Berendse F (2017b) Peat moss carpet reduces methane emission and facilitates shrub expansion in Siberian Arctic tundra. In: A clash of plants. Vegetation succession and its interaction with permafrost dynamics in the Arctic lowland tundra. Thesis, Wageningen University, Wageningen, pp 26–42

    Google Scholar 

  • Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer EM, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99(4):914–922

    Article  Google Scholar 

  • Liljedahl A, Hinzman L, Harazono Y, Zona D, Tweedie C, Hollister RD, Engstrom R, Oechel W (2011) Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8(11):3375–3389

    Article  Google Scholar 

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. https://doi.org/10.1038/ngeo2674

    Article  Google Scholar 

  • Lipson DA, Zona D, Raab TK, Bozzolo F, Mauritz M, Oechel W (2012) Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. Biogeosciences 9(1):577–591

    Article  Google Scholar 

  • Liu L, Zhang T, Wahr J (2010) InSAR measurements of surface deformation over permafrost on the North slope of Alaska. J Geophys Res Earth 115(F3):F03023. https://doi.org/10.1029/2009JF001547

    Article  Google Scholar 

  • Liu L, Schaefer K, Zhang T, Wahr J (2012) Estimating 1992–2000 average active layer thickness on the Alaskan north slope from remotely sensed surface subsidence. J Geophys Res Earth 117(F1):F01005. https://doi.org/10.1029/2011JF002041

    Article  Google Scholar 

  • Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A (2018) Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15:5287–5313. https://doi.org/10.5194/bg-15-5287-2018

    Article  Google Scholar 

  • Lougheed VL, Butler MG, McEwen DC, Hobbie JE (2011) Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years. Ambio 40(6):589

    Article  Google Scholar 

  • Luke C, Cox P (2011) Soil carbon and climate change: from the Jenkinson effect to the compost-bomb instability. Eur J Soil Sci 62(1):5–12

    Article  Google Scholar 

  • Lund M, Falk JM, Friborg T, Mbufong HN, Sigsgaard C, Soegaard H, Tamstorf MP (2012) Trends in CO2 exchange in a high Arctic tundra heath, 2000–2010. J Geophys Res Biogeo 117(G2):G02001. https://doi.org/10.1029/2011JG001901

    Article  Google Scholar 

  • Lupascu M, Welker J, Seibt U, Maseyk K, Xu X, Czimczik C (2014) High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat Clim Chang 4(1):51

    Article  Google Scholar 

  • Mann P, Eglinton TI, McIntyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RG (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun 6:7856. https://doi.org/10.1038/ncomms8856

    Article  Google Scholar 

  • Mann PJ, Spencer RG, Hernes PJ, Six J, Aiken GR, Tank SE, McClelland JW, Butler KD, Dyda RY, Holmes RM (2016) Pan-arctic trends in terrestrial dissolved organic matter from optical measurements. Front Earth Sci 4:25

    Article  Google Scholar 

  • Marsh P, Russell M, Pohl S, Haywood H, Onclin C (2009) Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000. Hydrol Proc Intl J 23(1):145–158

    Article  Google Scholar 

  • Marushchak M, Pitkämäki A, Koponen H, Biasi C, Seppälä M, Martikainen P (2011) Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Chang Biol 17(8):2601–2614

    Article  Google Scholar 

  • Matsuoka N (2001) Solifluction rates, processes and landforms: a global review. Earth Sci Rev 55(1–2):107–134

    Article  Google Scholar 

  • Mazhitova G, Malkova G, Chestnykh O (2008) Zamolodchikov D recent decade thaw-depth dynamics in the European Russian Arctic based on the Circumpolar Active Layer Monitoring (CALM) data. In: Proceedings of the ninth international conference on Permafrost, pp 1155–1160

    Google Scholar 

  • McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res Atmos 109(D18):D18102. https://doi.org/10.1029/2004JD004583

    Article  Google Scholar 

  • McClelland J, Stieglitz M, Pan F, Holmes RM, Peterson BJ (2007) Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J Geophys Res Biogeosci 112(G4):G04S60. https://doi.org/10.1029/2006JG000371

    Article  Google Scholar 

  • McClelland JW, Holmes RM, Peterson BJ, Raymond PA, Striegl R, Zhulidov AV, Zimov SA, Zimov N, Tank SE, Spencer RG (2016) Particulate organic carbon and nitrogen export from major Arctic rivers. Glob Biogeochem Cycles 30(5):629–643

    Article  Google Scholar 

  • McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, Chen G, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D (2018) Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences:201719903

    Google Scholar 

  • Merbold L, Kutsch WL, Corradi C, Kolle O, Rebmann C, Stoy PC, Zimov SA, Schulze ED (2009) Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob Chang Biol 15(11):2599–2614

    Article  Google Scholar 

  • Mesquita P, Wrona FJ, Prowse TD (2010) Effects of retrogressive permafrost thaw slumping on sediment chemistry and submerged macrophytes in Arctic tundra lakes. Freshw Biol 55(11):2347–2358. https://doi.org/10.1111/j.1365-2427.2010.02450.x

    Article  Google Scholar 

  • Minke M, Donner N, Karpov N, de Klerk P, Joosten H (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr Periglac Process 20(4):357–368

    Article  Google Scholar 

  • Morgenstern A, Grosse G, Günther F, Fedorova I, Schirrmeister L (2011) Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5(4):849–867. https://doi.org/10.5194/tc-5-849-2011

    Article  Google Scholar 

  • Morgenstern A, Ulrich M, Günther F, Roessler S, Fedorova IV, Rudaya NA, Wetterich S, Boike J, Schirrmeister L (2013) Evolution of thermokarst in east Siberian ice-rich permafrost: a case study. Geomorphology 201:363–379. https://doi.org/10.1016/j.geomorph.2013.07.011

    Article  Google Scholar 

  • Murton JB (1996) Thermokarst-lake-basin sediments, Tuktoyaktuk coastlands, western arctic Canada. Sedimentology 43(4):737–760

    Article  Google Scholar 

  • Murton JB (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk coastlands, western Arctic Canada. Glob Planet Chang 28(1–4):175–192

    Article  Google Scholar 

  • Muskett RR, Romanovsky VE (2009) Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ Res Lett 4(4):045009

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509

    Article  Google Scholar 

  • Nakagawa F, Yoshida N, Nojiri Y, Makarov V (2002) Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions. Glob Biogeochem Cycles 16(3). https://doi.org/10.1029/2000GB001384

    Article  Google Scholar 

  • Natali SM, Schuur EA, Trucco C, Pries CEH, Crummer KG, Lopez AFB (2011) Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob Chang Biol 17(3):1394–1407

    Article  Google Scholar 

  • Natali SM, Schuur EA, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95(3):602–608

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeo 120(3):525–537. https://doi.org/10.1002/2014jg002872

    Article  Google Scholar 

  • Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, Li B, Petrov RE, Maximov TC, van Huissteden J, Berendse F (2014) Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang 5(1):67–70. https://doi.org/10.1038/nclimate2446

    Article  Google Scholar 

  • Neff JC FJ, Zimov SA, Davydov SP, Carrasco JJ, Schuur EA, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33(23):L23401. https://doi.org/10.1029/2006GL028222

  • Nelson F, Hinkel K, Shiklomanov N, Mueller G, Miller L, Walker D (1998) Active-layer thickness in north Central Alaska: systematic sampling, scale, and spatial autocorrelation. J Geophys Res Atmos 103(D22):28963–28973

    Article  Google Scholar 

  • Nitze I, Grosse G, Jones BM, Romanovsky VE, Boike J (2018) Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat Commun 9(1):5423. https://doi.org/10.1038/s41467-018-07663-3

    Article  Google Scholar 

  • Nowinski NS, Taneva L, Trumbore SE, Welker JM (2010) Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163(3):785–792

    Article  Google Scholar 

  • O’Donnell JA, Aiken GR, Walvoord MA, Butler KD (2012a) Dissolved organic matter composition of winter flow in the Yukon River basin: implications of permafrost thaw and increased groundwater discharge. Glob Biogeochem Cycles 26(4):GB0E06. https://doi.org/10.1029/2012GB004341

    Article  Google Scholar 

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP (2012b) The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15(2):213–229

    Article  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77(2):221–238

    Article  Google Scholar 

  • Osterkamp T (2005) The recent warming of permafrost in Alaska. Glob Planet Chang 49(3):187–202

    Article  Google Scholar 

  • Overeem I, Syvitsky J (2010) Sedimentaryfluxes and budgets in changing cold environments: quantitative analysis and scaling issues. Geogr Ann Ser B 92(2):285–296

    Article  Google Scholar 

  • Park H, Yabuki H, Ohata T (2012) Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Pol Sci 6(1):23–37

    Article  Google Scholar 

  • Park H, Walsh J, Fedorov A, Sherstiukov A, Iijima Y, Ohata T (2013) The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and north American watersheds. Cryosphere 7(2):631–645

    Article  Google Scholar 

  • Park H, Yoshikawa Y, Oshima K, Kim Y, Ngo-Duc T, Kimball JS, Yang D (2016) Quantification of warming climate-induced changes in terrestrial Arctic River ice thickness and phenology. J Clim 29(5):1733–1754

    Article  Google Scholar 

  • Parmentier F, Van Der Molen M, Van Huissteden J, Karsanaev S, Kononov A, Suzdalov D, Maximov T, Dolman A (2011) Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J Geophys Res Biogeo 116(G4):G04013. https://doi.org/10.1029/2011JG001653

    Article  Google Scholar 

  • Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31(18):L18208. https://doi.org/10.1029/2004GL020358

    Article  Google Scholar 

  • Paytan A, Lecher AL, Dimova N, Sparrow KJ, Kodovska FG-T, Murray J, Tulaczyk S, Kessler JD (2015) Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study. Proc Natl Acad Sci 112(12):3636–3640

    Article  Google Scholar 

  • Pizano C, Barón AF, Schuur EA, Crummer KG, Mack MC (2014) Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra. Environ Res Lett 9(7):075006

    Article  Google Scholar 

  • Plug LJ, West JJ (2009) Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J Geophys Res Earth 114(F1):F01002. https://doi.org/10.1029/2006JF000740

    Article  Google Scholar 

  • Plug LJ, Walls C, Scott B (2008) Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk peninsula, western Canadian Arctic. Geophys Res Lett 35(3):L03502. https://doi.org/10.1029/2007GL032303

    Article  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Kirpotin SN, Kulizhsky SP, Vorobiev SN (2013) Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences 10(8):5349–5365

    Article  Google Scholar 

  • Prowse T, Alfredsen K, Beltaos S, Bonsal BR, Bowden WB, Duguay CR, Korhola A, McNamara J, Vincent WF, Vuglinsky V (2011) Effects of changes in arctic lake and river ice. Ambio 40(1):63–74

    Article  Google Scholar 

  • Rawlins MA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, Groisman PY, Hinzman LD, Huntington TG, Kane DL (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23(21):5715–5737

    Article  Google Scholar 

  • Raymond PA, McClelland J, Holmes R, Zhulidov A, Mull K, Peterson B, Striegl R, Aiken G, Gurtovaya T (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21(4):GB4011. https://doi.org/10.1029/2007GB002934

    Article  Google Scholar 

  • Repo E, Huttunen J, Naumov A, Chichulin A, Lapshina E, Bleuten W, Martikainen P (2007) Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B Chem Phys Meteorol 59(5):788–796

    Article  Google Scholar 

  • Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen PJ (2009) Large N2O emissions from cryoturbated peat soil in tundra. Nat Geosci 2(3):189

    Article  Google Scholar 

  • Reyes FR, Lougheed VL (2015) Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct Antarct Alp Res 47(1):35–48

    Article  Google Scholar 

  • Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res Biogeo 111(G4):G04002. https://doi.org/10.1029/2005JG000150

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):1–22

    Article  Google Scholar 

  • Rowland J, Travis B, Wilson C (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38(17):L17504. https://doi.org/10.1029/2011GL048497

    Article  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53(4):349–410

    Google Scholar 

  • Sachs T, Giebels M, Boike J, Kutzbach L (2010) Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob Chang Biol 16(11):3096–3110

    Google Scholar 

  • Sánchez-García L, Alling V, Pugach S, Vonk J, Van Dongen B, Humborg C, Dudarev O, Semiletov I, Gustafsson Ö (2011) Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas. Glob Biogeochem Cycles 25(2)

    Article  Google Scholar 

  • Sannel A, Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake complexes. J Geophys Res Biogeo 116(G3):G03035. https://doi.org/10.1029/2010JG001635

    Article  Google Scholar 

  • Sazonova T, Romanovsky V (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr Periglac Process 14(2):125–139

    Article  Google Scholar 

  • Schädel C, Bader MK-F, Schuur EA, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Chang 6(10):950

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53

    Article  Google Scholar 

  • Schleusner P, Biskaborn BK, Kienast F, Wolter J, Subetto D, Diekmann B (2015) Basin evolution and palaeoenvironmental variability of the thermokarst lake E l’gene-K yuele, Arctic Siberia. Boreas 44(1):216–229

    Article  Google Scholar 

  • Schreiner K, Bianchi TS, Rosenheim BE (2014) Evidence for permafrost thaw and transport from an Alaskan North slope watershed. Geophys Res Lett 41(9):3117–3126. https://doi.org/10.1002/2014GL059514

    Article  Google Scholar 

  • Schuur EA, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10(2):280–292

    Article  Google Scholar 

  • Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714

    Article  Google Scholar 

  • Schuur EA, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp T (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556

    Article  Google Scholar 

  • Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  • Semiletov IP, Pipko II, Shakhova NE, Dudarev OV, Pugach SP, Charkin AN, McRoy C, Kosmach D, Gustafsson Ö (2011) Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8(9):2407–2426

    Article  Google Scholar 

  • Semiletov IP, Shakhova NE, Sergienko VI, Pipko II, Dudarev OV (2012) On carbon transport and fate in the east Siberian Arctic land–shelf–atmosphere system. Environ Res Lett 7(1):015201

    Article  Google Scholar 

  • Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat Res 75(2):366–370

    Article  Google Scholar 

  • Shiklomanov A, Lammers R (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4(4):045015

    Article  Google Scholar 

  • Shiklomanov AI, Lammers RB, Rawlins M, Smith L, Pavelsky T (2007) Temporal and spatial variations in maximum river discharge from a new Russian data set. Journal of geophysical research: Biogeosciences 112(G4):G04S53. https://doi.org/10.1029/2006JG000352

    Article  Google Scholar 

  • Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res Biogeosci 115(G4):G00I04. https://doi.org/10.1029/2009JG001248

  • Shkolnik I, Pavlova T, Efimov S, Zhuravlev S (2017) Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario. Climate Dynam https://doi.org/10.1007/s00382-017-3600-6

    Article  Google Scholar 

  • Shur Y, Jorgenson M (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr Periglac Process 18(1):7–19

    Article  Google Scholar 

  • Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497(7451):615

    Article  Google Scholar 

  • Sjögersten S, Caul S, Daniell T, Jurd A, O’Sullivan O, Stapleton C, Titman JJ (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53

    Article  Google Scholar 

  • Smith LC, Sheng Y, MacDonald G, Hinzman L (2005) Disappearing arctic lakes. Science 308(5727):1429–1429

    Article  Google Scholar 

  • Soudzilovskaia NA, Bodegom PM, Cornelissen JH (2013) Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct Ecol 27(6):1442–1454

    Article  Google Scholar 

  • Squires MM, Lesack LF, Hecky RE, Guildford SJ, Ramlal P, Higgins SN (2009) Primary production and carbon dioxide metabolic balance of a lake-rich arctic river floodplain: partitioning of phytoplankton, epipelon, macrophyte, and epiphyton production among lakes on the Mackenzie Delta. Ecosystems 12(5):853–872

    Article  Google Scholar 

  • St. Jacques JM, Sauchyn DJ (2009) Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett 36(1):L01401. https://doi.org/10.1029/2008GL035822

    Article  Google Scholar 

  • Stieglitz M, Déry S, Romanovsky V, Osterkamp T (2003) The role of snow cover in the warming of arctic permafrost. Geophys Res Lett 30(13):1721. https://doi.org/10.1029/2003GL017337

    Article  Google Scholar 

  • Striegl RGDM, McDonald CP, Rover JR, Stets EG (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cycles 24(4):GB0E05. https://doi.org/10.1029/2012GB004306

    Article  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Røjle Christensen T (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9(8):1185–1192

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411(6837):546

    Article  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston GE (2005) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res Biogeo 110(G1):G01004. https://doi.org/10.1029/2005JG000013

    Article  Google Scholar 

  • Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov T, Fedorov A (2003) Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrol Process 17(6):1073–1092

    Article  Google Scholar 

  • Tape KD, Verbyla D, Welker JM (2011) Twentieth century erosion in Arctic Alaska foothills: the influence of shrubs, runoff, and permafrost. J Geophys Res Biogeo 116(G4):G04024. https://doi.org/10.1029/2011JG001795

    Article  Google Scholar 

  • Teltewskoi A, Beermann F, Beil I, Bobrov A, De Klerk P, Lorenz S, Lüder A, Michaelis D, Joosten H (2016) 4000 years of changing wetness in a permafrost polygon Peatland (Kytalyk, NE Siberia): a comparative high-resolution multi-proxy study. Permafr Periglac Process 27(1):76–95

    Article  Google Scholar 

  • Trucco C, Schuur EAG, Natali SM, Belshe EF, Bracho R, Vogel J (2012) Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. J Geophys Res Biogeo 117(G2):G02031. https://doi.org/10.1029/2011jg001907

    Article  Google Scholar 

  • Turetsky M, Wieder R, Vitt D, Evans R, Scott K (2007) The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob Chang Biol 13(9):1922–1934

    Article  Google Scholar 

  • Turetsky M, Treat C, Waldrop M, Waddington J, Harden J, McGuire A (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res Biogeosci 113(G3):G00A10. https://doi.org/10.1029/2007JG000496

  • Ukraintseva N, Leibman M, Streletskaya I, Mikhaylova T (2014) Geochemistry of plant-soil-permafrost system on landslide-affected slopes, Yamal, Russia as an indicator of landslide age. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 107–131

    Google Scholar 

  • Van der Molen M, Van Huissteden J, Parmentier F, Petrescu A, Dolman A, Maximov T, Kononov A, Karsanaev S, Suzdalov D (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4(6):985–1003. https://doi.org/10.5194/bg-4-985-2007

    Article  Google Scholar 

  • Van Hardenbroek M, Lotter AF, Bastviken D, Duc N, Heiri O (2012) Relationship between δ13C of chironomid remains and methane flux in Swedish lakes. Freshw Biol 57(1):166–177

    Article  Google Scholar 

  • Van Huissteden J (1990) Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, Eastern Netherlands. In: Van Amerom H (ed) Mededelingen Rijks Geologische Dienst, vol 44–3. Rijks Geologische Dienst, pp 1–138

    Google Scholar 

  • Van Huissteden J, Dolman AJ (2012) Soil carbon in the Arctic and the permafrost carbon feedback. Curr Opin Environ Sustain 4(5):545–551. https://doi.org/10.1016/j.cosust.2012.09.008

    Article  Google Scholar 

  • Van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeo 110(G2):G02002. https://doi.org/10.1029/2005jg000010

    Article  Google Scholar 

  • Van Huissteden J, Maximov TC, Dolman AJ (2009) Correction to “High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeosci 114(G2):n/a–n/a. https://doi.org/10.1029/2009jg001040

    Article  Google Scholar 

  • Van Huissteden J, Berrittella C, Parmentier F, Mi Y, Maximov T, Dolman A (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Chang 1(2):119–123

    Article  Google Scholar 

  • Van Huissteden J, Vandenberghe J, Gibbard PL, Lewin J (2013) Permafrost and Periglacial features | Periglacial fluvial sediments and forms. In: Elias SA (ed) Encyclopedia of the quaternary, vol 3. Elsevier, Amsterdam, pp 490–499. https://doi.org/10.1016/b978-0-444-53643-3.00108-4

    Chapter  Google Scholar 

  • Vandenberghe J (2003) Climate forcing of fluvial system development: an evolution of ideas. Quat Sci Rev 22(20):2053–2060

    Article  Google Scholar 

  • Vandenberghe J (2008) The fluvial cycle at cold–warm–cold transitions in lowland regions: a refinement of theory. Geomorphology 98(3–4):275–284

    Article  Google Scholar 

  • Verville J, Hobbie S, Chapin FS, Hooper D (1998) Response of tundra CH4 and CO2 flux tomanipulation of temperature and vegetation. Biogeochemistry 41(3):215–235

    Article  Google Scholar 

  • Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T (2016) The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J Geophys Res Biogeo 121(3):586–620

    Article  Google Scholar 

  • Vonk JE, Gustafsson Ö (2013) Permafrost-carbon complexities. Nat Geosci 6(9):675–676. https://doi.org/10.1038/ngeo1937

    Article  Google Scholar 

  • Vonk JE, Sanchez-Garcia L, Semiletov I, Dudarev O, Eglinton T, Andersson A, Gustafsson Ö (2010) Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, east Siberian Sea. Biogeosciences 7(10):3153–3166

    Article  Google Scholar 

  • Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak WV, Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM (2013) High biolability of ancient permafrost carbon upon thaw. Geophys Res Lett 40(11):2689–2693. https://doi.org/10.1002/grl.50348

    Article  Google Scholar 

  • Vonk JE, Semiletov IP, Dudarev OV, Eglinton TI, Andersson A, Shakhova N, Charkin A, Heim B, Gustafsson Ö (2014) Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters. J Geophys Res Oceans 119(12):8410–8421

    Article  Google Scholar 

  • Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet M, Canario J, Cory RM (2015) Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12(23):7129–7167

    Article  Google Scholar 

  • Walker D, Jia G, Epstein H, Raynolds M, Chapin Iii F, Copass C, Hinzman L, Knudson J, Maier H, Michaelson G (2003) Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafr Periglac Process 14(2):103–123

    Article  Google Scholar 

  • Walter Anthony KM, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci 5(6):419–426. https://doi.org/10.1038/ngeo1480

    Article  Google Scholar 

  • Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS 3rd, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511(7510):452–456. https://doi.org/10.1038/nature13560

    Article  Google Scholar 

  • Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, Grosse G (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat Geosci 9:679–682

    Article  Google Scholar 

  • Walter Anthony K, von Deimling TS, Nitze I, Frolking S, Emond A, Daanen R, Anthony P, Lindgren P, Jones B, Grosse G (2018) 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun 9(1):3262

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS 3rd (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107):71–75. https://doi.org/10.1038/nature05040

    Article  Google Scholar 

  • Walter KM, Smith LC, Chapin FS, 3rd (2007a) methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci 365 (1856):1657–1676. doi:https://doi.org/10.1098/rsta.2007.2036

    Article  Google Scholar 

  • Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS 3rd (2007b) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318(5850):633–636. https://doi.org/10.1126/science.1142924

    Article  Google Scholar 

  • Walter K, Chanton J, Chapin F, Schuur E, Zimov S (2008) Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J Geophys Res Biogeosci 113(G3):G00A08. https://doi.org/10.1029/2007JG000569

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost – a review. Vadose Zone J 15 (6):0. doi:https://doi.org/10.2136/vzj2016.01.0010

    Article  Google Scholar 

  • Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12):L12402. https://doi.org/10.1029/2007GL030216

    Article  Google Scholar 

  • Wang P, Heijmans MM, Mommer L, van Ruijven J, Maximov TC, Berendse F (2016) Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ Res Lett 11(5):055003

    Article  Google Scholar 

  • Wickland K, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG (2012) Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen. Glob Biogeochem Cycles 26(4):GB0E03. https://doi.org/10.1029/2012GB004342

    Article  Google Scholar 

  • Wickland KP, Waldrop MP, Aiken GR, Koch JC, Jorgenson MT, Striegl RG (2018) Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ Res Lett 13(6):065011

    Article  Google Scholar 

  • Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophys Res Lett 41(2):555–560

    Article  Google Scholar 

  • Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci 9(2):99

    Article  Google Scholar 

  • Wik M, Johnson JE, Crill PM, DeStasio JP, Erickson L, Halloran MJ, Fahnestock MF, Crawford MK, Phillips SC, Varner RK (2018) Sediment characteristics and methane ebullition in three subarctic lakes. J Geophys Res Biogeo 123(8):2399–2411

    Article  Google Scholar 

  • Wild B, Andersson A, Bröder L, Vonk J, Hugelius G, McClelland JW, Song W, Raymond PA, Gustafsson Ö (2019) Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc Natl Acad Sci 116(21):10280–10285

    Article  Google Scholar 

  • Williams PJ, Smith MW (1991) The frozen earth. Fundamentals of geocryology. Cambridge University Press, Cambridge, 306 p

    Google Scholar 

  • Woo M-K (2012) Permafrost hydrology. Springer, 563 p

    Google Scholar 

  • Wrona FJ, Johansson M, Culp JM, Jenkins A, Mård J, Myers-Smith IH, Prowse TD, Vincent WF, Wookey PA (2016) Transitions in Arctic ecosystems: ecological implications of a changing hydrological regime. J Geophys Res Biogeo 121(3):650–674

    Article  Google Scholar 

  • Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophys Res Lett 32(2):L02703. https://doi.org/10.1029/2004GL021570

    Article  Google Scholar 

  • Ye H, Ladochy S, Yang D, Zhang T, Zhang X, Ellison M (2004) The impact of climatic conditions on seasonal river discharges in Siberia. J Hydrometeorol 5(2):286–295

    Article  Google Scholar 

  • Yi Y, Kimball JS, Chen R, Moghaddam M, Reichle RH, Mishra U, Zona D, Oechel WC (2018) Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska. Cryosphere 12(1):145–161. https://doi.org/10.5194/bg-15-5287-2018

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafr Periglac Process 14(2):151–160

    Article  Google Scholar 

  • Zakharova EA, Kouraev AV, Stephane G, Franck G, Desyatkin RV, Desyatkin AR (2018) Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: importance for agriculture and human life. Sci Total Environ 615:1290–1304

    Article  Google Scholar 

  • Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang D, Ye H (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res Atmos 110(D16):D16101. https://doi.org/10.1029/2004JD005642

    Article  Google Scholar 

  • Zhang W, Miller P, Jansson C, Samuelsson P, Mao J, Smith B (2018) Self-amplifying feedbacks accelerate greening and warming of the Arctic. Geophys Res Lett 45:7102–7111. https://doi.org/10.1029/2018GL077830

    Article  Google Scholar 

  • Zimov S, Semiletov I, Daviodov S, Voropaev YV, Prosyannikov S, Wong C, Chan Y-H (1993) Wintertime CO2 emission from soils of Northeastern Siberia. Arctic 46(3):197–204

    Article  Google Scholar 

  • Zimov S, Voropaev YV, Semiletov I, Davidov S, Prosiannikov S, Chapin FS, Chapin M, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277(5327):800–802

    Article  Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33(20). https://doi.org/10.1029/2006gl027484

  • Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol Rev 6(2–3):125–137

    Article  Google Scholar 

  • Zona D, Oechel W, Kochendorfer J, Paw U, Salyuk A, Olivas P, Oberbauer S, Lipson D (2009) Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Glob Biogeochem Cycles 23(2):GB2013. https://doi.org/10.1029/2009GB003487

    Article  Google Scholar 

  • Zona D, Lipson DA, Paw U, Kyaw T, Oberbauer SF, Olivas P, Gioli B, Oechel WC (2012) Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding. Glob Biogeochem Cycles 26(2):GB2004. https://doi.org/10.1029/2011GB004037

    Article  Google Scholar 

  • Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RY, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, Liljedahl A, Watts JD, Kimball JS, Lipson DA, Oechel WC (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci U S A 113(1):40–45. https://doi.org/10.1073/pnas.1516017113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Huissteden, J. (2020). Permafrost in Transition. In: Thawing Permafrost. Springer, Cham. https://doi.org/10.1007/978-3-030-31379-1_5

Download citation

Publish with us

Policies and ethics