Skip to main content

Optimizing the Nozzle Path in the 3D Printing Process

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

In this paper, we define the 3D printing routing problem, the problem of finding the optimal path of the nozzle in a fused deposition modeling 3D printing system, so as to minimize the time required to create on object. We formally model the problem with an integer linear programming formulation and then solve it via heuristic algorithms. We test the algorithms on a set of large-size real-life instances, comparing them with one of the most widely used open source software for the problem. We show that large time reductions can be obtained. We finally propose a set of interesting directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akella, S.: Hot off the press: the technology behind 3D printing. Professor Scarlatos HON 301 (2012)

    Google Scholar 

  2. Campbell, T., Williams, C., Ivanova, O., Garrett, B.: Could 3D printing change the world? Technologies, Potential, and Implications of Additive Manufacturing. Atlantic Council, Washington, DC (2011)

    Google Scholar 

  3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  4. Corberán, Á., Laporte, G.: Arc Routing: Problems, Methods, and Applications. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  5. Corberán, Á., Plana, I., Sanchis, J.M.: A branch & cut algorithm for the windy general routing problem and special cases. Networks 49(4), 245–257 (2007)

    Article  MathSciNet  Google Scholar 

  6. Corberán, Á., Prins, C.: Recent results on arc routing problems: an annotated bibliography. Networks 56(1), 50–69 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Dror, M., Langevin, A.: A generalized traveling salesman problem approach to the directed clustered rural postman problem. Transp. Sci. 31(2), 187–192 (1997)

    Article  Google Scholar 

  8. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part II: the rural postman problem. Oper. Res. 43(3), 399–414 (1995)

    Article  Google Scholar 

  9. Fernández, E., Meza, O., Garfinkel, R., Ortega, M.: On the undirected rural postman problem: tight bounds based on a new formulation. Oper. Res. 51(2), 281–291 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fok, K.Y., Ganganath, N., Cheng, C.T., Tse, C.K.: A 3D printing path optimizer based on Christofides algorithm. In: IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2 (2016)

    Google Scholar 

  11. Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM (JACM) 26(3), 538–554 (1979)

    Article  MathSciNet  Google Scholar 

  12. Ghiani, G., Improta, G.: The laser-plotter beam routing problem. J. Oper. Res. Soc. 52(8), 945–951 (2001)

    Article  Google Scholar 

  13. Ghiani, G., Laganà, D., Musmanno, R.: A constructive heuristic for the undirected rural postman problem. Comput. Oper. Res. 33(12), 3450–3457 (2006)

    Article  Google Scholar 

  14. Ghiani, G., Laporte, G.: A branch-and-cut algorithm for the undirected rural postman problem. Math. Program. 87(3), 467–481 (2000)

    Article  MathSciNet  Google Scholar 

  15. Groves, G.W., Van Vuuren, J.H.: Efficient heuristics for the rural postman problem. ORiON J. ORSSA 21(1), 33–51 (2005)

    Google Scholar 

  16. Hertz, A., Laporte, G., Hugo, P.N.: Improvement procedures for the undirected rural postman problem. INFORMS J. Comput. 11(1), 53–62 (1999)

    Article  MathSciNet  Google Scholar 

  17. Holmberg, K.: Heuristics for the rural postman problem. Comput. Oper. Res. 37(5), 981–990 (2010)

    Article  Google Scholar 

  18. Kulkarni, P., Marsan, A., Debasish, D.: A review of process planning techniques in layered manufacturing. Rapid Prototyping J. 6(1), 18–35 (2000)

    Article  Google Scholar 

  19. Laporte, G.: Modeling and solving several classes of arc routing problems as traveling salesman problems. Comput. Oper. Res. 24(11), 1057–1061 (1997)

    Article  MathSciNet  Google Scholar 

  20. Lechowicz, P., Koszalka, L., Pozniak-Koszalka, I., Kasprzak, A.: Path optimization in 3D printer: algorithms and experimentation system. In: 4th International Symposium on Computational and Business Intelligence (ISCBI), pp. 137–142 (2016)

    Google Scholar 

  21. Novellani, S.: Models and algorithm for the optimization of real-world routing and logistics problems. 4OR 14(3), 331–332 (2016)

    Article  MathSciNet  Google Scholar 

  22. Orazi, L., Montanari, F., Campana, G., Tomesani, L., Cuccolini, G.: CNC paths optimization in laser texturing of free form surfaces. In: Procedia 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering, vol. 33, pp. 440–445 (2015)

    Google Scholar 

  23. Panesar, A., Brackett, D., Ashcroft, I., Wildman, R., Hague, R.: Design optimization strategy for multifunctional 3D printing. In: 25th International Solid Freeform Fabrication Symposium, pp. 592–605 (2014)

    Google Scholar 

  24. Wang, W.M., Zanni, C., Kobbelt, L.: Improved surface quality in 3D printing by optimizing the printing direction. Comput. Graph. Forum 35(2), 59–70 (2016)

    Article  Google Scholar 

  25. Wojcik, M., Pozniak-Koszalka, I., Koszalka, L., Kasprzak, A.: Experimentation system for path planning applied to 3D printing. In: Advances in Applied Digital Human Modeling and Simulation, pp. 291–30 (2017)

    Google Scholar 

  26. Zhang, X., Le, X., Panotopoulou, A., Whiting, E., Wang, C.C.: Perceptual models of preference in 3D printing direction. ACM Trans. Graph. (TOG) 34(6), 215 (2015)

    Article  Google Scholar 

  27. Ultimaker: Cura software (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Novellani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iori, M., Novellani, S. (2020). Optimizing the Nozzle Path in the 3D Printing Process. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics