Skip to main content

Biofilm-Mediated Dental Diseases

  • Chapter
  • First Online:

Abstract

A human body is estimated to be made up of around one hundred trillion cells of which 90% is microflora. Bacteria are the predominant colonizers in the mouth, with 500–700 species commonly seen. The various surfaces of the oral cavity provide differing environments forming “microniches.” This leads to the development of a highly complex microbiome. Dental plaque is the biofilm which forms on the various tooth surfaces. Oral microflora has a dual role. It plays a part, not just in pathology, but also in defending the host body and in most cases is a true commensal. The most common oral diseases are dental caries and periodontitis, both of which are biofilm-mediated. Dental caries is characterized by the loss of mineralized tooth tissue due to bacterial action. Periodontitis is essentially an inflammatory process which leads to the destruction of the supporting tissues of the teeth. Several systemic diseases have been shown to be influenced by dental plaque-associated oral diseases. These include cardiovascular diseases, arthrosclerosis, infective endocarditis, aspiration pneumonia, diabetes mellitus, preterm birth, and low-birth-weight babies. The primary step in management of biofilm-related dental diseases is physical treatment, which aims to reduce the bacterial load in biofilms. However, advanced disease treatment becomes essential. Antimicrobials and antibiotics may be administered to control the disease process and reduce bacterial load and growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aas JA, Paster BJ, Stokes LN et al (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  • Addy M, Moran J, Griffiths A (1985) Extrinsic tooth discolouration by metals and chlorhexidine. I. Surface protein denaturation or dietary precipitation? Br Dent J 159:331–334

    Article  CAS  PubMed  Google Scholar 

  • Addy M, Moran J, Wade W (1994) Chemical plaque control in the prevention of gingivitis and periodontitis. In: Lang Nf, Karring T (ed) Proceedings of the 1st European workshop on periodontology. Quintessence Publishing, London, pp 244–257

    Google Scholar 

  • Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Allison DG (2003) The biofilm matrix. Biofouling 19:139–150

    Article  CAS  PubMed  Google Scholar 

  • Barrington EP (1981) An overview of periodontal surgical procedures. J Periodontol 52:518–528

    Article  CAS  PubMed  Google Scholar 

  • Barton J, Abelson D (1987) The clinical efficacy of wooden interdental cleaners in gingivitis reduction. Clin Prev Dent 9:17–20

    CAS  PubMed  Google Scholar 

  • Becker MR, Paster BJ, Leys EJ et al (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden GH (1990) Microbiology of root surface caries in humans. J Dent Res 69:1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Bowden GH, Hardie JM, McKee AS et al (1976) The microflora associated with developing carious lesions of the distal surfaces of the upper first premolars in 13–14 year old children. In: Stiles HM, Loesche WJ, O’Brien TC (eds) Proceedings microbial aspects of dental caries, vol 1. Information Retrieval Inc., Washington DC, pp 233–241

    Google Scholar 

  • Bowen WH, Burne RA, Wu H et al (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26(3):229–242

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM (2002) Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res 36:81–86

    Google Scholar 

  • Brailsford SR, Shah B, Simins D et al (2001) The predominant aciduric microflora of root-caries lesions. J Dent Res 80:1828–1833

    Article  CAS  PubMed  Google Scholar 

  • Brecx M (1997) Strategies and agents in supragingival chemical plaque control. Periodontol 2000 15:100–108

    Article  CAS  PubMed  Google Scholar 

  • Cancro LP, Fischman SL (2000) The expected effect on oral health of dental plaque control through mechanical removal. Periodontology 8:60–74

    Article  Google Scholar 

  • Carranza FA, Hogan EL (2012) Gingival enlargement. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St Louis, p 91

    Google Scholar 

  • Claffey NM, Polyzois IN, Williams RC (2014) History of the oral-systemic relationship. In: Genco RJ, Williams RC (eds) Periodontal disease and overall health: a clinician’s guide, 2nd edn. PAC, Inc, USA, pp 49–62

    Google Scholar 

  • Collaert B, Attstrom R, De Bruyn H et al (1992) The effect of delmopinol rinsing on dental formation and gingivitis healing. J Clin Periodontol 9:274–280

    Article  Google Scholar 

  • Corbett TL, Dawes C (1998) A comparison of the site-specificity of supragingival and subgingival calculus deposition. J Periodontol 69(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Cullinan MP, Seymour GJ (2000) Periodontal disease and systemic illness: will the evidence ever be enough? Periodontology 62:271–286

    Article  Google Scholar 

  • Cullinan MP, Ford PJ, Seymour GJ (2009) Periodontal disease and systemic health: current status. Aust Dent J 54(1):62–69

    Article  Google Scholar 

  • Dai R, Lam OL, Lo EC et al (2015) A systematic review and meta-analysis of clinical, microbiological, and behavioural aspects of oral health among patients with stroke. J Dent 43(2):171–180

    Article  CAS  PubMed  Google Scholar 

  • de Soet JJ, Nyvad B, Kilian M (2000) Strain-related acid production by oral streptococci. Caries Res 34:486–490

    Article  PubMed  Google Scholar 

  • Demirel K, Yalcin F, Polat E (1999) Release kinetics of 25% tetracycline hydrochloride-loaded ethylene vinyl acetate fibers. Period Clin Invest: Off Publ Northeast Soc Period 21:6–9

    CAS  Google Scholar 

  • Diehl SR, Chou CH, Kuo F et al (2012) Genetic factors and periodontal disease. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, p 284

    Google Scholar 

  • Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye BA, Thornton-Evans G, Li X, Iafolla TJ (2015) Dental caries and sealant prevalence in children and adolescents in the United States, 2011–2012. National Center for Health Statistics Data Brief, 2015 edn. National Center for Health Statistics, Hyattsville, MD

    Google Scholar 

  • Eley BM (1999) Periodontology: antibacterial agents in the control of supragingival plaque [mdash] a review. Br Dent J 186:286–296

    CAS  PubMed  Google Scholar 

  • Ewan VC, Sails AD, Walls AW et al (2015) Dental and microbiological risk factors for hospital-acquired pneumonia in non-ventilated older patients. PLoS ONE 10(4):e0123622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandesa T, Bhavsara C, Sawarkara S et al (2018) Current and novel approaches for control of dental biofilm. Int J Pharm 536:199–210

    Article  CAS  Google Scholar 

  • Ferrer DM, Mira A (2016) Oral biofilm architecture at the microbial scale. Trends Microbiol 24(4):246–248

    Article  CAS  PubMed  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66(11):4790–4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flotra L, Gjermo I, Rolla G et al (1971) Side effects of chlorhexidine mouthwashes. Scand J Dent Res 79:119–125

    CAS  PubMed  Google Scholar 

  • Guo L et al (2015) The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Sci Rep 5:18015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurav AN (2012) Periodontitis and insulin resistance: casual or causal relationship? J Diabetes Metab 36(6):404–411

    Article  Google Scholar 

  • Hajishengallis G, Kawai T (2014) Immunopathogenic mechanisms in periodontal disease. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiologyand immunology, 2nd edn. ASM Press Washington, DC, pp 287, 288–290, 295–303

    Google Scholar 

  • Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Hayakumo S, Arakawa S, Mano Y et al (2013) Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clin Oral Invest 17:379–388

    Article  Google Scholar 

  • Hinrichs JE (2012) The role of dental calculus and other local predisposing factors. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 134–135, 231

    Google Scholar 

  • Hinrichs JE, Novak MJ (2012) Classification of diseases and conditions affecting the periodontium. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 34–64

    Google Scholar 

  • Hojo K, Nagaoka S, Ohshima T et al (2009) Bacterial interactions in dental biofilm development. J Dent Res 88(11):982–990

    Article  CAS  PubMed  Google Scholar 

  • Holmstrup P, Flyvbjerg A (2016) Linkage between periodontal disease and diabetes mellitus. In: Pedersen AML (ed) Oral Infections and General Health: From Molecule to Chairside. Springer International Publishing, Cham, pp 35–44

    Chapter  Google Scholar 

  • Hwang G et al (2016) Simultaneous spatio temporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Sci Rep 6:32841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide M, Papapanou PN (2013) Epidemiology of association between maternal periodontal disease and adverse pregnancy outcomes—systematic review. J Clin Periodontol 40(14):181–194

    Google Scholar 

  • Jenkins S, Addy M, Newcombe RG (1994) Dose response of chlorhexidine against plaque and comparison with triclosan. J Clin Periodontol 21:250–255

    Article  CAS  PubMed  Google Scholar 

  • Jepsen S, Deschner J, Braun A et al (2011) Calculus removal and the prevention of its formation. Periodontol 2000 55(1):167–188

    Article  PubMed  Google Scholar 

  • Jones MN, Song YH, Kaszuba M (1997) The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. J Drug Target 5:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kasimanickam RK, Ranjan A, Asokan GV (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–2819

    Article  CAS  Google Scholar 

  • Kassebaum NJ, Bernabe E, Dahiya M (2015) Global burden of untreated caries: a systematic review and metaregression. J Dent Res 94:650–658

    Article  CAS  PubMed  Google Scholar 

  • Kleinberg I, Jenkins GN (1964) The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva. Arch Oral Biol 9:493–516

    Article  CAS  PubMed  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr, Rickard AH et al (2000) Bacterial interactions and successions during plaque development. Periodontol 42:47–79

    Article  Google Scholar 

  • Kononen E, Asikainen S, Saarela M et al (1994) The oral gram-negative anaerobic microflora in young children: longitudinal changes from edentulous to dentate mouth. Oral Microbiol Immunol 9(3):136–141

    Article  CAS  PubMed  Google Scholar 

  • Koo H et al (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramitsu HK, He X, Lux R et al (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71(4):653–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont RJ, Lewis JP, Potempa J (2014) Virulence factors of periodontal bacteria. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiology and immunology, 2nd edn. ASM Press, Washington, DC, pp p273–p275

    Google Scholar 

  • Lang NP, Mombelli A, Attstrom R (1997) Dental plaque and calculus. Clinical periodontology and implant dentistry, 3rd edn. Blackwell Munksgaard, Oxford (United Kingdom)

    Google Scholar 

  • Laurence B, Mould-Millman NK, Scannapieco FA et al (2015) Hospital admissions for pneumonia more likely with concomitant dental infections. Clin Oral Invest 19:1261–1268

    Article  Google Scholar 

  • Lloret J, Bolanos L, Lucas MM et al (1995) Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl Environ Microbiol 61(10):3701–3704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lockhart PB, Brennan MT, Thornhill M et al (2009) Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc 140(10):1238–1244

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockhart PB, Bolger AF, Papapanou PN et al (2012) Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? Circulation 25(20):2520–2544

    Article  Google Scholar 

  • Loe H, Schiott CR (1970) The effect of suppression of oral microflora upon the development of dental plaque and gingivitis. In: McHugh WD (ed) Dental plaque. Livingstone, Edinburgh, pp 247–255

    Google Scholar 

  • Loesche WJ (1976) Chemotherapy of dental plaque infections. Oral Sci Rev 9:63–107

    Google Scholar 

  • Loesche WJ (1986) Role of Streptococcus mutans in human dentaldecay. Microbiol Rev 50:353–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal A, Singh DK, Siddiqui H et al (2017) New dimensions in mechanical plaque control: An overview. Indian J Dent Sci 9:133–139

    Article  Google Scholar 

  • Marino PJ, Wise MP, Williams DW (2017) Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients. J Critical Care 39:149–155

    Article  Google Scholar 

  • Marquis RE, Clock SA, Mota-Meira M (2003) Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 26:493–510

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (1989) Host defenses and microbial homeostasis: role of microbial interactions. J Dent Res 68:1567–1575

    Google Scholar 

  • Marsh PD (1999) Microbiologic aspects of dental plaque and dental caries. Dent Clin North Am 43:599–614

    Google Scholar 

  • Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38(3):204–211

    Article  CAS  PubMed  Google Scholar 

  • Marsh PD (2006) Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(1):14

    Article  CAS  Google Scholar 

  • Marsh PD (2010) Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am 54(3):441–454

    Article  PubMed  Google Scholar 

  • Marsh P, Martin MV (1999) Oral microbiology, 4th edn. Reed Educational and Professional Publishing Limited

    Google Scholar 

  • Marsh PD, Martin MV (2009a) Oral microbiology, 5th edn. Butterworth-Heinemann, London

    Google Scholar 

  • Marsh PD, Martin MV (2009b) Oral microbiology, 5th edn. Churchill Livingstone, Edinburgh (UK)

    Google Scholar 

  • McDermid AS, McKee AS, Marsh PD (1988) Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56(5):1096–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore WE, Moore LV (1994) The bacteria of periodontal diseases. Periodontol 2000(5):66–77

    Article  Google Scholar 

  • Nagayoshi M, Fukuizumi T, Kitamura C (2004) Efficacy of ozone on survival and permeability of oral microorganisms. Oral Microbiol Immunol 19:240–246

    Article  CAS  PubMed  Google Scholar 

  • Natto ZS, Aladmawy M, Alasqah M et al (2014) Factors contributing to tooth loss among the elderly: a cross sectional study. Singapore Dent J 35:17–22

    Article  PubMed  Google Scholar 

  • Nisengard RJ, Newman MG (1988) Oral microbiology and immunology, 2nd edn. W.B. Saunders Company

    Google Scholar 

  • Novak MJ, Novak KF, Preshaw PM (2012) Smoking and periodontal disease. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, p 301

    Google Scholar 

  • Oktyabrskii ON, Smirnovaa GV (2012) Redox potential changes in bacterial cultures under stress conditions. Microbiology 81(2):131–142

    Article  CAS  Google Scholar 

  • Otto K, Elwing H, Hermansson M (1999) Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. J Bacteriol 181(17):5210–5218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palm F, Pussinen PJ, Aigner A et al (2016) Association between infectious burden, socioeconomic status, and ischemic stroke. Atherosclerosis 254:117–123

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou W, Gizani S, Haffajee AD et al (2009) The microbiota on different oral surfaces in healthy children. Oral Microbiol Immunol 24(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Papapanou P (2014) Periodontal diseases: general concepts. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiology and immunology, 2nd edn. ASM Press Washington, DC, pp 251–259, 261–271

    Google Scholar 

  • Parahitiyawa NB, Jin LJ, Leung WK et al (2009) Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 22(1):46–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Diaz MA, Boegli L, James G et al (2015) Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater For Biol 55:360–366

    Article  CAS  Google Scholar 

  • Pitiphat W, Joshipura KJ, Gillman MW et al (2008) Maternal periodontitis and adverse pregnancy outcomes. Community Dent Oral Epidemiol 36(1):3–11

    PubMed  Google Scholar 

  • Pitts NB et al (2017) Dental caries. Nat Rev Dis Primers 3:17030

    Article  PubMed  Google Scholar 

  • Preshaw PM, Taylor JJ (2012) Periodontal pathogenesis. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 194–216

    Google Scholar 

  • Preshaw PM, Hefti AF, Novak MJ (2004) Subantimicrobial dose doxycycline enhances the efficacy of scaling and root planning in chronic periodontitis: a multicenter trial. J Periodontol 75:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Roberts-Harry EA, Clerehugh V (2000) Subgingival calculus: where are we now? A comparative review. J Dent 28(2):93–102

    Article  CAS  PubMed  Google Scholar 

  • Samaranayake L (2002) Essential microbiology for dentistry, 3rd edn. Harcourt Publisher Limited

    Google Scholar 

  • Samaranayake LP, Ellepola ANB (2000) Studying Candida albicans adhesion. In: An Y, Freidman RJ (eds) Handbook of bacterial adhesion: principles, methods and applications. Humana Press, New York, pp 527–540

    Chapter  Google Scholar 

  • Samaranayake L, Matsubara VH (2017) Normal oral flora and the oral ecosystem. Dent Clin North Am 61(2):199–215

    Article  PubMed  Google Scholar 

  • Sansone C, Van Houte J, Joshipura K et al (1993) The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72:508–516

    Article  CAS  PubMed  Google Scholar 

  • Scannapieco FA (2014) The oral environment. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (ed) Oral microbiology and immunology, 2nd edn. ASM Press, Washington, DC, pp 57–62, 66, 72

    Google Scholar 

  • Schiott C, Loe H, Jensen SB (1970) The effect of chlorhexidine mouthrinses on the human oral flora. J Periodont Res 5:84–89

    Article  CAS  Google Scholar 

  • Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R (2000) Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm: Off J Arbeitsgemeinsch Pharm Verfahrenstech e.V 50:83–99

    Google Scholar 

  • Siegrist BE, Gusberti FA, Brecx MC et al (1986) Efficacy of supervised rinsing with chlorhexidine digluconate in comparison to phenolic and plant alkaloid compounds. J Periodont Res l(16):60–73

    Google Scholar 

  • Simon-Soro A, Tomas I, Cabrera-Rubio R et al (2013) Microbial geography of the oral cavity. J Dent Res 92(7):616–621

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Kumar S, Dagli N (2014) Effect of tetracycline HCl in the treatment of chronic periodontitis—a clinical study. J Int Soc Prevent Commun Dent 4:149–153

    Article  Google Scholar 

  • Slocum C, Kramer C, Genco CA (2016) Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med 280(1):114–128

    Article  CAS  PubMed  Google Scholar 

  • Slots J, Emrich LJ, Genco RJ (1985) Relationship between some subgingival bacteria and periodontal pocket depth and gain or loss of periodontal attachment after treatment of adult periodontitis. J Clin Periodontol 12:540–552

    Article  CAS  PubMed  Google Scholar 

  • Socransky SS, Haffajee AD (1991) Microbial mechanisms in the pathogenesis of destructive periodontal diseases: a critical assessment. J Periodontal Res 26(3 Pt 2):195–212

    Article  CAS  PubMed  Google Scholar 

  • Soder B, Meurman JH, Soder PO (2014) Dental calculus is associated with death from heart infarction. Biomed Res Int 2014:1–5

    Article  Google Scholar 

  • Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90:294–303

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Iqbal Z, Ali J (2012) Treatment modalities and evaluation models for periodontitis. Int J Pharm 2:106–122

    Google Scholar 

  • Theilade E (1986) The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13:905–911

    Google Scholar 

  • Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, McCauley LK (2016) Osteoporosis and periodontitis. Curr Osteoporos Rep 14:284–291

    Article  PubMed  PubMed Central  Google Scholar 

  • White DJ (1997) Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 105(5 Pt 2):508–522

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012a). Oral health, Fact Sheet N° 318, 2012 edn. WHO Media centre, Geneva

    Google Scholar 

  • WHO (2012b) Oral health, Fact Sheet N° 318, 2012 edn. World Health Organization, WHO Media centre

    Google Scholar 

  • Wright GZ, Banting DW, Feasby WH (1976) Dorchester dental flossing study: preliminary report. Caries Res 10:379–385

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zeng X, Ning K et al (2012) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Zander HA, Hazen SP, Scott DB (1960) Mineralization of dental calculus. Proc Soc Exp Biol Med 103:257–260

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, S., Dubey, S., Gupta, A., Sharma, V. (2019). Biofilm-Mediated Dental Diseases. In: Kumar, S., Chandra, N., Singh, L., Hashmi, M., Varma, A. (eds) Biofilms in Human Diseases: Treatment and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-30757-8_7

Download citation

Publish with us

Policies and ethics