Skip to main content

Chemical Ecology of Ruta sp.: VOC, Chemotaxonomy and Allelochemistry

  • Chapter
  • First Online:
  • 569 Accesses

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

Abstract

Among the Rutaceae, the genus Ruta is an ideal model for understanding the structure and the origin of the diversity of volatile organic compounds (VOCs), since they have been for several years the subject of a thorough investigation of their interest in chemotaxonomy and pharmacology. The characteristics of these species are the presence of schizogenic secretory cavities that represent the original site of the synthesis of aromatic compounds. The power of these smells is also effective between a plant and its environment. In this chapter, we describe how, where, and by which pathways these species produce the volatile essence. We define the specific chemotype of the genus Ruta within the Rutaceae family. Moreover, we evoke the interest of VOCs in the foundations of chemical ecology to understand the role and the importance of chemical molecules in plant–insect–environment interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboutabl EA, Elazzouny AA, Hammerschmidt F (1988) The essential oil of Ruta graveolens L. growing in Egypt. Sci Pharm 56:121–124

    CAS  Google Scholar 

  • Aharoni A, Giri AP et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16(11):3110–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliotta G, Cafiero G, De Feo V, Sacch R (1994) Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. J Chem Ecol 20:2761–2775

    Article  CAS  PubMed  Google Scholar 

  • Aliotta G, Cafiero G, De Feo V, Palumbo AD, Strumia S (1996) Infusion of rue for control of purslane weed: biological and chemical aspects. Allelopathy J 3:207–216

    Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae, Ed. Elsevier Academic Press, Amsterdam, Boston

    Google Scholar 

  • Angioni A, Barra A (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54(12):4364–4370

    Article  CAS  PubMed  Google Scholar 

  • Antunes T (1982) Ultrastructure of secretory leaf glands of Ruta chalepensis L. Bull de la Société botanique de France 129(1):79–82

    Article  Google Scholar 

  • Asplund RO (1968) Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7:1995–1997

    Article  CAS  Google Scholar 

  • Asplund RO (1969) Some quantitative and qualitative aspects of the phytotoxicity of monoterpenes. Weed Sci 17:454–455

    Article  CAS  Google Scholar 

  • Atal CK (1982) Cultivation and utilization of aromatic plants, 1st edn. Council of Scientific and Industrial Research, New Delhi

    Google Scholar 

  • Atti-Santos AC, Pansera MR (2004) Seasonal variation of essential oil yield and composition of Thymus vulgaris L. (Lamiaceae) from South Brazil. J Essent Oil Res 16(4):294–295

    Article  CAS  Google Scholar 

  • Bachelot C, Blaise A, Corbel T, Le G (2005) Les huiles essentielles. 27 p

    Google Scholar 

  • Bagchi GD, Dwivedi PD, Singh A, Haider F, Naqvi A (2003) Variations in essential oil constituents at different growth stages of Ruta chalepensis on cultivation at north Indian plains. J Essent Oil Res 15:263–264

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R et al (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815

    Article  CAS  PubMed  Google Scholar 

  • Balz R (1986) Les huiles essentielles et comment les utiliser, Ed. Rodolphe BALZ, 152 p

    Google Scholar 

  • Baser KH, Ozek CT, Beis SH (1996) Medicinal constituents of the essential oil of Ruta chalepensis L. from Turkey. J Essent Oil Res 8:413–414

    Article  CAS  Google Scholar 

  • Becerra JX (2007) The impact of herbivore-plant coevolution on plant community structure. Proc Natl Acad Sci USA 104:7483–7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    Article  CAS  PubMed  Google Scholar 

  • Bennaoum Z, Benhassaini H (2017) Autoecology and place of species of the Ruta genus in vegetation of north-western Algeria. Ecologia Mediterr 43(1):19–35

    Google Scholar 

  • Bennaoum Z, Benhassaini H, Larabi F, Tirse M (2015) Macro and micro-phytodermic seasonal characters of wild Ruta species (Ruta montana, Ruta chalepensis subsp. latifolia and Ruta chalepensis subsp. angustifolia) in northwestern Algeria. J G A E 3:56–68

    Google Scholar 

  • Bennaoum Z, Benhassaini H, Falconieri D, Piras A, Porcedda S (2017) Chemical variability in essential oils from Ruta species among seasons, and its taxonomic and ecological significance. Nat Prod Res 31(19):2329–2334

    Article  CAS  PubMed  Google Scholar 

  • Bergougnoux V, Caissard J-C, Jullien F, Magnard J-L, Scalliet G, Mark Cock J, Hugueney P, Baudino S (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226(4):853–866

    Article  CAS  PubMed  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  CAS  PubMed  Google Scholar 

  • Bertrand C, Fabre N, Moulis C (2003) Composition of the essentials oil of Ruta Corsica DC. J Essent Oil Res 15(2):98–99

    Article  CAS  Google Scholar 

  • Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J. 54(4):656–669

    Article  CAS  PubMed  Google Scholar 

  • Bouabidi W, Hanana M, Gargouri S, Amri I, Fezzani T, Ksontini M, Jamoussi B, Hamrouni L (2015) Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils. Nat Prod Res 29(9):864–868

    Article  CAS  PubMed  Google Scholar 

  • Boutoumi H, Saad M, Khodja M (2009) Essential oil from Ruta montana L. (Rutaceae) chemical composition, insecticidal and larvicidal activities. J Essent Oil Bear Pl 12:714–721

    Article  CAS  Google Scholar 

  • Bruneton J (1999) Pharmacogonosie, phytochimie, plantes médicinales, 3rd edn. Lavoisier, Paris

    Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GGE, Neil Towers GH (1992) Biological activity of limonoids from the rutales. Phytochemistry 31:377–394

    Article  CAS  Google Scholar 

  • Chartier M, Gibernau M, Renner SS (2014) The evolution of pollinator/plant interaction types in the Araceae. Evolution 68:1533–1543

    Article  PubMed  Google Scholar 

  • Chase MW, Morton CM, Kallunki JA (1999) Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. Am J Bot 86:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Chatin J (1875) Etudes histologiques et histogéniques sur les glandes foliaires intérieures et quelques productions analogues: annales des sciences naturelle. Ed Imprimerie Martinet, Paris

    Google Scholar 

  • Chen F, Ro DK et al (2004) Characterization of a root-specific arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-Cineole. Plant Physiol 135(4):1956–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102

    Article  CAS  PubMed  Google Scholar 

  • Chibani S, Bouratoua A, Kabouche A, Laggoune S, Semra Z, Smati F, Kabouche Z (2013) Composition and antibacterial activity of the essential oil of Ruta chalepensis subsp. angustifolia from Algeria Der Pharm Lett 5(5):252–255

    Google Scholar 

  • Copolovici LO, Filella I et al (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau R (1986) Biochemistry of monoterpenes and sesquiterpenes of the essentials oils herbs, spices and médicinal plants. Recent Adv Botany Hortic Pharmacol 1:81–133

    Google Scholar 

  • Croteau R, Felton M (1981) Relationship of camphor biosynthesis to leaf development in Sage (Salvia officinalis). Plant Physiol 67(4):820–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva MF, das GF, Gottlieb OR, Ehrendorfer F (1988) Chemosystematics of the Rutaceae: suggestions for a more natural taxonomy and evolutionary interpretation of the family. Plant Syst Evol 161:97–134

    Google Scholar 

  • Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linean Soc 80:91–124

    Article  Google Scholar 

  • De Feo V, Desimone F, Senatore F (2002) Potential allele chemicals from the essential oil of Ruta graveolens. Phytochemistry 61:573–578

    Article  PubMed  Google Scholar 

  • Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a nonisoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146:27–36

    Article  CAS  Google Scholar 

  • Derbesy M (1997) Reproductibilité des extraits naturels industriels. Ed PaIums Actualités Cosmétiques, 132 p

    Google Scholar 

  • Despinasse Y (2015) Diversité chimique et caractérisation de l’impact du stress hydrique chez les lavandes, 181 pp

    Google Scholar 

  • Deysson G (1978) Organisation et classification des plantes vasculaires. ed SEDES, Paris

    Google Scholar 

  • Djarri L, Ferhat M, Merabet G, Chelghoum A, Laggoune S, Semra Z, Smati F, Kabouche Z (2013) Composition and antibacterial activity of the essential oil of Ruta montana from Constantine (Algeria). Der Pharmacia Lett 5(4):70–73

    Google Scholar 

  • Dob T, Dahmane D, Gauriat-Desrdy B, Daligault V (2008) Volatile constituents of the essential oil of Ruta chalepensis L. subsp angustifolia (Pers.) P. Cout J Essent Oil Res 20:306–309

    Article  CAS  Google Scholar 

  • Duarte LP, Figueiredo RC, Sousa GF, Soares DBS, Rodrigues SBV, Silva FC, Silva GDF (2010) Chemical constituents of Salacia elliptica (Celastraceae). Quim Nova 33:900–903

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902

    Google Scholar 

  • Duraffourd C, Lapraz JC (2002) Traité de phytothérapie clinique. Ed. Maloine, Paris

    Google Scholar 

  • Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituent. Phytother Res 21:308–323

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, WerckReichhart D (2006) Cytochromes P450 in the phenolic metabolism. Phytochem Rev 5:293–308

    Article  CAS  Google Scholar 

  • Engler A (1931) Rutaceae. The natural plant families. Ed Die naturlichen Pflanzen familien. 2 Aufl 19 a. Leipzig (Germany): Engelmann

    Google Scholar 

  • Ferhat M, Kabouche A, Kabouche Z (2014) Comparative compositions of essential oils of three Ruta species growing in different soils. J Mater Environ Sci 5:735–738

    Google Scholar 

  • Figueiredo AC, Barroso JG et al (1995) Composition of the essential oil of Lavandula pinnata L. fil. var. pinnata grown on madeira. Flavour Fragrance J 10(2):93–96

    Google Scholar 

  • Fischer NH, Williamson GB et al (1994) In search of allelopathy in the florida scrub-the role of terpenoids. J Chem Ecol 20:1355–1380

    Article  CAS  PubMed  Google Scholar 

  • Franchomme P, Penoel D (1990) L’aromathérapie exactement, encyclopédie de l’utilisation thérapeutique des huiles essentielles. Ed. Jollois, Limoges

    Google Scholar 

  • Friedman J (1987) Allelopathy in desert ecosystems. In: Waller GR (ed ) Allelochemicals: role in agriculture and forestry. A. C. S. Symposium

    Google Scholar 

  • Gallet C, Pellissier F (2002) Interactions allélopathiques en milieu forestier. Rev For Fr LIV 6:567–576

    Article  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, McConkey ME et al (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122(1):205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giampieri M, Balbi A, Mazzei M, La Colla P, Ibba C, Lodd R (2009) Antiviral activity of indole derivatives. Antiviral Res 83:179–185

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RD (1974) Chemotaxonomy of flowering plants. Ed McGill, Queen’s University Press

    Google Scholar 

  • Gibka J, Kunicka-Styczynska A, Glinski M (2009) Antimicrobial activity of undecan- 2-one, Undecan-2-ol and their Derivatives. J Essent Oil Bearing Plants 12:605–614

    Article  CAS  Google Scholar 

  • Gill RS, Gupta K, Taggar GK, Taggar MS (2010) Role of oxidative enzymes in plant defenses against herbivory. Acta Phytopathol Entomol Hung 45:277–290

    Article  CAS  Google Scholar 

  • Gotsiou P, Naxakis G et al (2002) Diversity in the composition of monoterpenoids of Origanum microphyllum (Labiatae). Biochem Syst Ecol 30(9):865–879

    Article  CAS  Google Scholar 

  • Gouinguene SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129(3):1296–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guignard JL (1983) Abrégé de botanique. Ed Masson, Paris, 259 p

    Google Scholar 

  • Guitton Y, Nicolè F et al (2010) Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development. Physiol Plant 138:150–163

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. Ed Macmillan, London. 777 p

    Google Scholar 

  • Halligan JP (1975) Toxic terpenes from Artemisia californica. Ecology 56:999–1003

    Article  CAS  Google Scholar 

  • Hammiche V, Azzouz M (2013) Les rues: ethnobotanique, phytopharmacologie et toxicité. Phytothérapie 11:22–30

    Article  CAS  Google Scholar 

  • Harborne JB, Turner BL (1984) Plant chemosystematics. Ed Academic Press

    Google Scholar 

  • Hegnauer R (1986) Phytochemistry and plant taxonomy-an essay on the chemotaxonomy of higher plants. Phytochemistry 25:1519–1535

    Article  CAS  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci 104(13):5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiling S, Schuman MC et al (2010) Jasmonate and pphsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyl linalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendel-Rahmanim K, Masci T et al (2007) Diurnal regulation of scent emission in rose flowers. Planta 226(6):1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Holm YI, Laakso I (1997) Variation in the essential oil composition of Artemisia annua L. of different origin cultivated in Finland. Flavour Fragrance J 12(4):241–246

    Article  CAS  Google Scholar 

  • Hopkins W (2003) Plant physiology. Ed. Deboek Larcier, 513 pp

    Google Scholar 

  • Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J et al (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool (Jpn) 38:365–368

    Article  Google Scholar 

  • Iijima Y, Davidovich-Rikanati R et al (2004a) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136(3):3724–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima Y, Gang DR et al (2004b) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134(1):370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inigo RPA, De Viana MEL, Catalan CAN, De Iglesias DIA (1981) Ess Deriv Argumari 51:349–351; in Ferhat M Kabouche A Kabouche Z (2014) Comparative compositions of essential oils of three Ruta species growing in different soils. J Mater Environ Sci 5:735–738

    Google Scholar 

  • Jeaun JM, Annie F, Chrystian JL (2005) Phenolic compounds of plants. pp 203–204

    Google Scholar 

  • Johnson CB, Kazantzis A (2004) Seasonal, populational and ontogenic variation in the volatile oil content and composition of individuals of Origanum vulgare subsp. Hirtum, assessed by GC headspace analysis and by SPME sampling of individual oil glands. Phytochem Anal 15(5):286–292

    Article  CAS  PubMed  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  PubMed  Google Scholar 

  • Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects Food Feed 1(2):103–119

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Google Scholar 

  • Khadhri A, Bouali I, Belkhir S, El Mokni R, Smiti S, Almeida C, Nogueira JMF, Eduarda M, Araújo M (2014) Chemical variability of two essential oils of tunisian rue: Ruta montana and Ruta chalepensis. J Essent Oil Bear Pl 17:445–451

    Article  CAS  Google Scholar 

  • Kholi RK (1994) Allelopathic implications of eucalyptus in agroecosystems In: Narwal SS Tauro P (eds) Allelopathy in agriculture and forestry. Scientific Publishers, Jodhpur

    Google Scholar 

  • Kienast H (1885) About the development of containers in the leaves of Hypericum and Ruta

    Google Scholar 

  • Knudsen J, Eriksson R et al (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1–120

    Article  Google Scholar 

  • Kordali S, Kesdek M et al (2007) Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Ind Crops Prod 26(3):278–297

    Article  CAS  Google Scholar 

  • Lafuente EO (2006) Stratégies d’émission de Composés organiques volatils (COV) par quatre espèces végétales méditerranéennes, 286 p

    Google Scholar 

  • Lamnaour D (2006) Morphological description, geographical distribution and ecology of Ruta chalepensis L. Rutaceae. Guide Med Plants North Afr 12(1):241–244

    Google Scholar 

  • Levin RA, McDade LA et al (2003) The systematic utility of floral and vegetative fragrance in two genera of nyctaginaceae. Syst Biol 52(3):334–351

    Article  PubMed  Google Scholar 

  • Lin FD, Knabe DA, Tanksley TD (1987) Apparent digestibility of amino acids, gross energy and starch in corn, sorghum, wheat, barley, oat groats and wheat middlings for growing pigs. J Anim Sci 64:1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME (2010) Site of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631

    Article  CAS  Google Scholar 

  • Majdoub O, Dhen N, Souguir S, Haouas D, Baouandi M, Laarif A, Chaieb I (2014) Chemical composition of Ruta chalepensis essential oils and their insecticidal activity against Tribolium castaneum. Tunisian J Plant Prot 9:83–90

    Google Scholar 

  • Malik AA, Showkat RM, Javed A (2013) Ruta graveolens L. essential oil composition under different nutritional treatments. Middle East J Sci Res 17(7):885–890

    Google Scholar 

  • Mancuso G, Borgonovo G, Scaglioni L, Bassoli A (2015) Phytochemicals from Ruta graveolens activate TAS2R bitter taste receptors and TRP channels involved in gustation and nociception. Molecules 20:18907–18922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann J (1987) Secondary metabolism, 2nd ed. Clarendon press Oxford, 374 p

    Google Scholar 

  • Martin DM, Gershenzon J et al (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiacci L, Hütter E et al (2000) Plantodour mediates parasitoid host handling and oviposition in an endophytic tritrophic system. Chemoecology 10:185–192

    Article  Google Scholar 

  • Mazzei M, Nieddu E, Miele M, Balbi A, Ferrone M, Fermeglia M, Mazzei MT, Pricl S, La Colla P, Marongiu F, Ibba C, Loddo R (2007) Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae. Bioorg Med Chem 16:2591–2605

    Article  PubMed  CAS  Google Scholar 

  • Mejri J, Abderrabba M, Mejri M (2010) Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Ind Crop Prod 32:671–673

    Article  CAS  Google Scholar 

  • Mejri J, Bouajila J, Aydi A, Barth D, Abderrabba M, Mejri M (2012) Supercritical CO2 extract and essential oil of Ruta chalepensis L. growing in Tunisia: a natural source of Undecan-2-one. Anal Chem Lett 2:290–300

    Article  CAS  Google Scholar 

  • Merghache S, Hamza M, Tabti B (2009) Etude physicochimique de l’huile essentielle de Ruta chalepensis L. de Tlemcen. Algérie Afriq Sci 5:67–81

    Google Scholar 

  • Michael Smith C (1985) Expression, mechanisms and chemistry of resistance in soybean, Glycine max L. (Merr.) to the soybean looper. Pseudoplusia Includens (Walker) 6(3):243–248

    Google Scholar 

  • Milesi S, Massot B, Gontier E, Bourgaut F, Guckert A (2001) Ruta graveolens L.: a promising species for the production of furanucoumarins. Plant Sci 161:189–199

    Article  CAS  Google Scholar 

  • Millar J, Midland S et al (2005) (2,3,4,4-Tetramethylcyclopentyl) methyl acetate, a sex pheromone from the obscure mealybug: first example of a new structural class of monoterpenes. J Chem Ecol 31:2999–3005

    Article  CAS  PubMed  Google Scholar 

  • Monterde P (1986) Nouvelle flore du Liban et de la Syrie. Ed Beyrouth, Liban, 563p

    Google Scholar 

  • Moore BD, Andrew R, LKülheim C, Foley WJ (2013) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201(3):733–750

    Article  PubMed  Google Scholar 

  • Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93(5):332–351

    Article  CAS  Google Scholar 

  • Muller WH, Lorber P, Haley B, Johnson K (1969) Volatile growth inhibitors produced by Salvia leucophylla: effect on oxygen uptake by mitochondrial suspensions. Bull Torrey Bot Club 96(1):89–96

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Ros R et al (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng 10(3–4):166–177

    Article  PubMed  CAS  Google Scholar 

  • Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibition effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coliO157: H 7, Salmonella Typhimurium, Staphylococcus aureus and Listeria manocytogense. Food Control 18:414–420

    Article  CAS  Google Scholar 

  • Paris R, Delaveau P (1965) Possibilités et limites de la Chimiotaxinomie. Bull de la Société Botanique de France 112:143–149

    Article  Google Scholar 

  • Paschold A, Halitschke R et al (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O (1986) Three pollination morphs in Cimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia 68:304–307

    Article  PubMed  Google Scholar 

  • Penuelas J, Llusia J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237

    Article  CAS  Google Scholar 

  • Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10(4):166–169

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  CAS  Google Scholar 

  • Peterson RL, Scott MG, Ellis BE (1978) Structure of a stem-derived callus of Ruta graveolens: meristems, leaves, and secretory structures. Can J Bot 56(21):2717–2729

    Article  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5(3):237–243

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369

    Article  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Rasool R, Ganai BA, Akbar S, Kamili AN, Masood A (2010) Phytochemical screening of Prunella vulgaris L. an important medicinal plant of Kashmir. Pak J Pharm Sci 23:399–402

    CAS  PubMed  Google Scholar 

  • Raymond M (2005) L’aromathérapie chez le nourrisson et le petit enfant, 101 p

    Google Scholar 

  • Reyes RE, Gonzales AG (1970) Structure of pinnarin and furopinnarin, two new coumarins from the roots of Ruta pinnata. Phytochemistry 9:833–840

    Article  Google Scholar 

  • Rice EL (1984) Allelopathhy. Ed Academic Press, Orlando

    Google Scholar 

  • Richter G (1993) Métabolisme des végétaux: Physiologie et biochimie. Ed. Presses polytechniques et universitaires. Romandes, 292 p

    Google Scholar 

  • Rose USR, Manukian A et al (1996) Volatile semiochemicals released from undamaged cotton leaves. Plant Physiol 111:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustaiyan A, Khossravi M, Sultani-Lotfabadi F, Yari M, Masoudi S, Monfared A (2002) Constituents of the essential oil of Ruta chalepensis L. from Iran. J Essent Oil Res 14:378–379

    Article  CAS  Google Scholar 

  • Salvo G, Bacchetta G, Ghahremaninejad F, Conti E (2008) Phylogenetic relationships of Rutaceae: new evidence from the chloroplast genome and comparisons with non-molecular data. J Mol Phylogenet Evol 49:736–748

    Article  CAS  Google Scholar 

  • Salvo G, Simon YW, Rosenbau G, Ree R, Conti E (2010) Tracing the temporal and spatial origins of island endemics in the mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst Biol 59(6):705–722

    Article  PubMed  Google Scholar 

  • Samate DA (2002) Compositions chimiques d’huiles essentielles extraites de plantes aromatiques de la zone soudanienne du Burkina Faso, 250p

    Google Scholar 

  • Sangwan NS, Farooqi AHA et al (2001) Regulation of essential oil production in plants. Plant Growth Regul 34(1):3–21

    Article  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE et al (2008) Isoprene emission from plants: Why and how. Ann Bot 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Luthra R et al (1989) Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus). Planta Med 55(3):254–256

    Article  CAS  PubMed  Google Scholar 

  • Singh R (2016) Chemotaxonomy: a tool for plant classification. J. Med Plants Stud 4(2):90–93

    Google Scholar 

  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98(6):1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM (1976) The chemotaxonomy of plants London. Ed Edward Arnold

    Google Scholar 

  • Soleimani M, Aberoomand-Azar P, Saber-Tehrani M, Rustaiyan A (2009) Volatile composition of Ruta graveolens L. of North of Iran. World Appl Sci 7:124–126

    CAS  Google Scholar 

  • Spichiger RE, Savolainen VV, Figeat M, Jean-Monod DB (2004) Botanique systématique des plantes à fleurs: Une approche phylogénétique nouvelle des angiospermes des régions tempérés et tropicales, 3rd edn. Presse polytechnique et universitaire romande, Lossane, p 413p

    Google Scholar 

  • Stashenko EE, Acosta R, Martínez JR (2000) High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.). J Biochem Biophys Methods 5(43):379–390

    Article  CAS  PubMed  Google Scholar 

  • Stevens PF (1984) Homology and phylogeny: morphology and systematics. Syst Bot 9(4):395–409

    Article  Google Scholar 

  • Tang Z, Yang Y, Yang Y, Xu Y (2011) Chemical composition and biological activity of the essential oil of Ruta graveolens. Zhongguo Xiandai Yingyong Yaoxue 28(9):834

    CAS  Google Scholar 

  • Tarayre M, Thompson JD et al (1995) Intraspecific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed-germination. Oecologia 101:110–118

    Article  PubMed  Google Scholar 

  • Tirse M, Benhassaini H, Bennaoum Z, Nitsche S, Chaudanson D, Aufray B, Sail K, Bassou G (2017) Foliar microphytodermal characterization of Pistacia lentiscus under different bioclimates from Northwest Algeria. Arab J Med Aromat Plants 3(1):28–42

    Google Scholar 

  • Ton JD, Alessandro M et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49(1):16–26

    Article  PubMed  CAS  Google Scholar 

  • Touche J (1997) Représentativité et reproductibilité des extraits de végétaux aromatiques au niveau du végétal. Rivista Italiana EPPOS 288–294

    Google Scholar 

  • Tschirch A, Stock E (1933) The resins. Ed Berlin, Borntraeger

    Google Scholar 

  • Turlings TCJ, Tumlinson JH et al (1990) Exploitation of herbivore induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öztürk M (2006) Alkaloids and coumarins from Ruta species. Nat Prod Commun 1(10):851–857

    CAS  Google Scholar 

  • Unsicker SB, Kunert G (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12(4):479–485

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verzera A, Mondello L, Ragusa S, Dugo G (2000) Essential oil of the leaves of a typical mediterranean plant: Note II. Ruta chalepensis L. (Rutaceae). Essenze e derivati agrumari 70:207–210

    CAS  Google Scholar 

  • Voirin B, Bayet C (1996) Developmental changes in the monoterpene composition of Mentha x piperita leaves from individual peltate trichomes. Phytochemistry 43(3):573–580

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6:1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman PG (1975) Alkaloids of the Rutaceae: their distribution and systematic significance. Biochem Syst Ecol 3:149–180

    Article  CAS  Google Scholar 

  • Waterman PG (1983) Phylogenetic implications of the distribution of secondary metabolites within the Rutales. In: Salvo G, Bacchetta G, Ghahremaninejad F, Conti E (2008) Phylogenetic relationships of Rutaceae: new evidence from the chloroplast genome and comparisons with non-molecular data. J. Mol Phylogenet Evol 49:736–748

    Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75(2):225–233

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Yaacob KB, Abdullah CM, Joulain D (1989) Essential oil of Ruta graveolens L. J. Essent Oil Res 1:203–207

    Article  CAS  Google Scholar 

  • Yamaura T, Tanaka S, Tabata M (1989) Light dependent formation of glandular trichomes and monoterpenes in thyme seedlings. Phytochemistry 28:741–744

    Article  CAS  Google Scholar 

  • Zellagui A, Belkassam A, Belaidi A, Gherraf N (2012) Environmental impact on the chemical composition and yield of essential oils of Algerian Ruta Montana (Clus.) L and their antioxidant and antibacterial activities. Adv Environ Biol 6:2684–2688

    Google Scholar 

  • Zeybek N, Zeybek U (1994) Pharmaceutical botany. Ed University Printing House, Izmir

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zineb Bennaoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennaoum, Z., Benhassaini, H. (2019). Chemical Ecology of Ruta sp.: VOC, Chemotaxonomy and Allelochemistry. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_13

Download citation

Publish with us

Policies and ethics