Skip to main content

On Ordinal Invariants in Well Quasi Orders and Finite Antichain Orders

  • Chapter
  • First Online:
Well-Quasi Orders in Computation, Logic, Language and Reasoning

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

We investigate the ordinal invariants height, length, and width of well quasi orders (WQO), with particular emphasis on width, an invariant of interest for the larger class of orders with finite antichain condition (FAC). We show that the width in the class of FAC orders is completely determined by the width in the class of WQOs, in the sense that if we know how to calculate the width of any WQO then we have a procedure to calculate the width of any given FAC order. We show how the width of WQO orders obtained via some classical constructions can sometimes be computed in a compositional way. In particular this allows proving that every ordinal can be obtained as the width of some WQO poset. One of the difficult questions is to give a complete formula for the width of Cartesian products of WQOs. Even the width of the product of two ordinals is only known through a complex recursive formula. Although we have not given a complete answer to this question we have advanced the state of knowledge by considering some more complex special cases and in particular by calculating the width of certain products containing three factors. In the course of writing the paper we have discovered that some of the relevant literature was written on cross-purposes and some of the notions re-discovered several times. Therefore we also use the occasion to give a unified presentation of the known results.

Mirna Džamonja thanks the Leverhulme Trust for a Research Fellowship for the academic year 2014/2015, the Simons Foundation for a Visiting Fellowship in the Autumn of 2015 and the Isaac Newton Institute in Cambridge for their support during the HIF programme in the Autumn of 2015, supported by EPSRC Grant Number EP/K032208/1. She most gratefully acknowledges the support of the Institut d’histoire et de philosophie des sciences et des techniques (IHPST) at University Paris 1, where she is as an Associate Member. The three authors thank the London Mathematical Society for their support through a Scheme 3 Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We adopted the definition from Laver [12].

References

  1. Abraham, U. (1987). A note on Dilworth’s theorem in the infinite case. Order, 4(2), 107–125. https://doi.org/10.1007/BF00337691.

    Article  Google Scholar 

  2. Abraham, U., & Bonnet, R. (1999). Hausdorff’s theorem for posets that satisfy the finite antichain property. Fundamenta Mathematicae, 159(1), 51–69.

    Article  Google Scholar 

  3. Abraham, U., Bonnet, R., Cummings, J., Džamonja, M., & Thompson, K. (2012). A scattering of orders. Transactions of the American Mathematical Society, 364(12), 6259–6278. https://doi.org/10.1090/S0002-9947-2012-05466-3.

    Article  Google Scholar 

  4. Blass, A., & Gurevich, Y. (2008). Program termination and well partial orderings. ACM Transactions on Computational Logic, 9(3), 18. https://doi.org/10.1145/1352582.1352586.

    Article  Google Scholar 

  5. Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1), 161–166. https://doi.org/10.2307/1969503.

    Article  Google Scholar 

  6. Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63(3), 600–610. https://doi.org/10.2307/2371374.

    Article  Google Scholar 

  7. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 3(2), 326–336. https://doi.org/10.1112/plms/s3-2.1.326.

    Article  Google Scholar 

  8. de Jongh, D. H. J., & Parikh, R. (1977). Well-partial orderings and hierarchies. Indagationes Mathematicae (Proceedings), 39(3):195–207. https://doi.org/10.1016/1385-7258(77)90067-1.

    Article  Google Scholar 

  9. Kříž, I., Thomas, R. (1990). Ordinal types in Ramsey theory and well-partial-ordering theory. In J. Nešetřil & V. Rödl (Eds.), Algorithms and Combinatorics: Mathematics of Ramsey Theory (Vol. 5, pp 57–95). Springer. https://doi.org/10.1007/978-3-642-72905-8_7.

    Google Scholar 

  10. Kruskal, J. (1960). Well-quasi-ordering, the Tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society, 95(2), 210–225. https://doi.org/10.2307/1993287.

    Article  Google Scholar 

  11. Kruskal, J. B. (1972). The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorial Theory, Series A, 13(3), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5.

    Article  Google Scholar 

  12. Laver, R. (1976). Well-quasi-orderings and sets of finite sequences. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 79, No. 1, pp. 1–10). https://doi.org/10.1017/S030500410005204X.

    Article  Google Scholar 

  13. Van der Meeren, J. (2015). Connecting the two worlds: Well-partial-orders and ordinal notation systems. Ph.D. thesis, Universiteit Gent.

    Google Scholar 

  14. Van der Meeren, J., Rathjen, M., & Weiermann, A. (2015). Well-partial-orderings and the big Veblen number. Archive for Mathematical Logic, 54(1–2), 193–230. https://doi.org/10.1007/s00153-014-0408-5.

    Article  Google Scholar 

  15. Milner, E. C. (1985). Basic wqo- and bqo-theory. In Graphs and order (Banff, Alta., 1984), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences (Vol. 147, pp. 487–502). Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-5315-4_14.

    Chapter  Google Scholar 

  16. Milner, E. C., & Sauer, N. (1981). On chains and antichains in well founded partially ordered sets. Journal of the London Mathematical Society, 2(1), 15–33. https://doi.org/10.1112/jlms/s2-24.1.15.

    Article  Google Scholar 

  17. Mirsky, L. (1971). A dual of Dilworth’s decomposition theorem. American Mathematical Monthly, 78(8), 876–877. https://doi.org/10.2307/2316481.

    Article  Google Scholar 

  18. Perles, M. A. (1963). On Dilworth’s theorem in the infinite case. Israel Journal of Mathematics, 1(2), 108–109. https://doi.org/10.1007/BF02759806.

    Article  Google Scholar 

  19. Pouzet, M. (1979). Sur les chaînes d’un ensemble partiellement bien ordonné. Publ Dép Math Lyon, 16(1), 21–26. http://www.numdam.org/article/PDML_1979__16_1_21_0.pdf.

  20. Rado, R. (1954). Partial well-ordering of sets of vectors. Mathematika, 1(2), 89–95. https://doi.org/10.1112/S0025579300000565.

    Article  Google Scholar 

  21. Rathjen, M., & Weiermann, A. (1993). Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60(1), 49–88. https://doi.org/10.1016/0168-0072(93)90192-G.

    Article  Google Scholar 

  22. Schmerl, J. H. (2002). Obstacles to extending Mirsky’s theorem. Order, 19(2), 209–211. https://doi.org/10.1023/A:1016541101728.

    Article  Google Scholar 

  23. Schmidt, D. (1979). Well-partial orderings and their maximal order types. Heidelberg: Habilitationsschrift.

    Google Scholar 

  24. Schmidt, D. (1981). The relation between the height of a well-founded partial ordering and the order types of its chains and antichains. Journal of Combinatorial Theory, Series B, 31(2), 183–189. https://doi.org/10.1016/S0095-8956(81)80023-8.

    Article  Google Scholar 

  25. Schmitz, S., Schnoebelen, Ph. (2011). Multiply-recursive upper bounds with Higman’s lemma. In Proceeding of the ICALP 2011. Lecture Notes in Computer Science (Vol. 6756, pp. 441–452). Springer. https://doi.org/10.1007/978-3-642-22012-8_35.

    Chapter  Google Scholar 

  26. Weiermann, A. (2009). A computation of the maximal order type of the term ordering on finite multisets. In Proceedings of CiE-2009. Lecture Notes in Computer Science (Vol. 5635, pp. 488–498). Springer. https://doi.org/10.1007/978-3-642-03073-4_50

    Chapter  Google Scholar 

  27. West, D. B. (1982). Extremal problems in partially ordered sets. In Rival, I. (Ed.), Ordered Sets, NATO Advanced Study Institutes Series (Vol. 83, pp. 473–521). Springer. https://doi.org/10.1007/978-94-009-7798-3_16.

    Chapter  Google Scholar 

  28. Wolk, E. S. (1967). Partially well ordered sets and partial ordinals. Fundamenta Mathematicae, 60(2), 175–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Džamonja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Džamonja, M., Schmitz, S., Schnoebelen, P. (2020). On Ordinal Invariants in Well Quasi Orders and Finite Antichain Orders. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_2

Download citation

Publish with us

Policies and ethics