Skip to main content

Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors

  • Chapter
  • First Online:
Book cover Nanotheranostics

Abstract

Superparamagnetic hyperthermia (SPMHT) is noninvasive, nontoxic, and with increased efficiency in destroying malignant tumors compared with magnetic hyperthermia (MHT), and conventional chemo- and radiotherapy (RT) currently used in medical clinics in this issue. Nowadays SPMHT appears as the most promising alternative method in future therapy of cancer. In this chapter, SPMHT/MHT with bioencapsulated/biofunctionalized ferrimagnetic nanoparticles, best suited for this therapy, and the recent significant results obtained in vitro and in vivo on different animal models and for different types of cancers with high incidence among the people, with the greatest potential for application in clinical trials, will be presented. Moreover, the new concept of nanotheranostic as a result of advanced nanobiotechnology for increasing the efficiency in cancer therapy to 100% and nontoxicity on the heath tissues also will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DG:

2-Deoxyglucose

5-FU:

5-Fluorouracil (anticancer drug)

ADR:

Drug-resistive cancer cells

AMF:

Alternating magnetic field

ATA:

Aminoterephthalic acid

Bio-FiMNPs:

Biocompatible ferrimagnetic nanoparticles

Bio-MNPs:

Biocompatible magnetic nanoparticles

Bio-SPMNPs:

Biocompatible superparamagnetic nanoparticles

CDs:

Cyclodextrins

CMC:

Carboxymethyl cellulose

CT:

Computed tomography

Cy7:

Cyanine7 (lipophilic fluorescent dye)

DOX:

Doxorubicin (anticancer drug)

FiM:

Ferrimagnetic

FiMNPs:

Ferrimagnetic nanoparticles

FIMO:

Ferromagnetic iron-manganese oxide

FITC:

Fluorescent nanoparticles for imaging

FMI:

Fluorescence molecular imaging

HAP:

Hydroxyapatite

HER:

Herceptin

HPMC:

Hydroxyl-propyl methyl cellulose

IONPs:

Iron oxide nanoparticles

IR:

Infrared

Ls:

Liposome

MagTSLs:

Thermo-sensitive magnetoliposomes

MCL:

Magnetic cationic liposomes

MFHT:

Magnetic fluid hyperthermia

mHAP:

Magnetic hydroxyapatite

MHT:

Magnetic hyperthermia

MNCs:

Micellar magnetic nanoclusters

MNPs:

Magnetic nanoparticles

MRI:

Magnetic resonance imaging

MTB:

Magnetic tactic bacteria

MTT:

MTT assay

MTX:

Methotrexate

NFs:

Nano-flowers

NIR:

Near-infrared

NMHT:

Nano-magnetic hyperthermia

NPs:

Nanoparticles

NPTT:

Nano-photothermal therapy

OA:

Oleic acid

PAI:

Photoacoustic imaging

PBS:

Phosphate buffer solution

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PES:

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)

PET:

Positron emission tomography

PM:

Polymeric micelle

PSA:

Prostate-specific antigen

PVA:

Polyvinyl alcohol

ROS:

Reactive oxygen specie

RT:

Radiotherapy

SAR:

Specific absorption rate

SERS:

Surface-enhanced Raman scattering

SPECT:

Single-photon emission computed tomography

SPIONs:

Superparamagnetic iron oxide nanoparticles

SPM:

Superparamagnetic relaxation

SPMHT:

Superparamagnetic hyperthermia

SPMNPs:

Superparamagnetic nanoparticles

TA:

Terephthalic acid

US:

Ultrasound

References

  • Almaki JH, Nasiri R, Idris A, Majid FAA, Salouti M, Wong TS, Dabagh S, Marvibaigi M, Amini N. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnology. 2016;27:105601, 13pp.

    Article  PubMed  CAS  Google Scholar 

  • Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA. Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C. 2011a;115:18–22.

    Article  CAS  Google Scholar 

  • Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB 1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011b;5:6279–96.

    Article  PubMed  CAS  Google Scholar 

  • Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm. 2012;434:444–52.

    Article  PubMed  CAS  Google Scholar 

  • Alphandéry E, Chebbi I, Guyot F, Durand-Dubief M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int J Hyperthermia. 2013;29:801–9.

    Article  PubMed  Google Scholar 

  • Baker I, Zeng Q, Li W, Sullivan CR. Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys. 2006;99:08H106–08H106-3.

    Article  CAS  Google Scholar 

  • Caizer C. Magnetic anisotropy of CoδFe3-δO4 nanoparticles for applications in magnetic hyperthermia. In: The 19th international conference on magnetism (ICM 2012), 8–13 Jul, Busan, Korea, 2012.

    Google Scholar 

  • Caizer C. SPMHT with biocompatible SPIONs for destroy the cancer cells. In: The 8th international conference on fine particle magnetism (ICFPM-2013), 24–27 Jun, Perpignan, France, 2013.

    Google Scholar 

  • Caizer C. Computational study on superparamagnetic hyperthermia with biocompatible SPIONs to destroy the cancer cells. J Phys Conf Ser. 2014;521:012015–4.

    Article  CAS  Google Scholar 

  • Caizer C. Magnetic hyperthermia using magnetic metal/oxide nanoparticles with potential in cancer therapy, Ch. 10. In: Rai M, Shegokar R, editors. Metal nanoparticles in pharma. Cham: Springer; 2017.

    Google Scholar 

  • Caizer C, Tura V. Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles. J Magn Magn Mater. 2006;301:513–20.

    Article  CAS  Google Scholar 

  • Caizer C, Hadaruga N, Hadaruga D, Tanasie G, Vlazan P. The Co ferrite nanoparticles/liposomes: magnetic bionanocomposites for applications in malignant tumors therapy. In: The 7th international conference on inorganic materials, 12–14 Sept, Biarritz, France, 2010a.

    Google Scholar 

  • Caizer C, Stancu A, Postolache P, Dumitru I, Bodale I, Vlazan P. The magnetic properties of the CoδFe(3-δ)O4 surfacted nanoparticles with potential applications in cancer therapy. In: The 7th international conference on fine particle magnetism (ICFPM-2010), 21–24 Jun, Uppsala, Sweden, 2010b.

    Google Scholar 

  • Caizer C, Soica C, Dehelean C, Radu A, Caizer IS. Study on toxicity of the superparamagnetic nanoparticles on the cells in order to use them in cancer therapy. In: The 8th international conference on fine particle magnetism, 24–27 Jun, Perpignan, France, 2013.

    Google Scholar 

  • Caizer C, Buteica A, Mindrila I. Biocompatible magnetic oxide nanoparticles with metal ions coated with organic shell as potential therapeutic agents in cancer, Ch. 11. In: Rai M, Shegokar R, editors. Metal nanoparticles in pharma. Cham: Springer; 2017.

    Google Scholar 

  • Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, Hernandez R, Meyerand ME, Barnhart TE, Cai W. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem. 2013;52:13319–23.

    Article  CAS  Google Scholar 

  • Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:17024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta NR, Krishnan S, Speiser DE, Neufeld E, Kuster N, Bodis S, Hofmann H. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat Rev. 2016;50:217–27.

    Article  CAS  PubMed  Google Scholar 

  • Denoyer D, Greguric I, Roselt P, Neels OC, Aide N, Taylor SR, Katsifis A, Dorow DS, Hicks RJ. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med. 2010;51:441–7.

    Article  CAS  PubMed  Google Scholar 

  • Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clément O, Silva AK, Ménager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–16.

    Article  PubMed  CAS  Google Scholar 

  • Durymanov MO, Rosenkranz AA, Sobolev AS. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics. 2015;5:1007–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann U, Roeth A, Eberbeck D, Buhl E, Neumann U, Schmitz-Rode T, Slabu I. Combining bulk temperature and nanoheating enables advanced magnetic fluid hyperthermia efficacy on pancreatic tumor cells. Sci Rep. 2018;8:13210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa A, Bugnet M, Radtke G, Neveu S, Botton GA, Wilhelm C, Abou-Hassan A. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale. 2015;7:18872–7.

    Article  CAS  PubMed  Google Scholar 

  • Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J. 2008;37:223–8.

    Article  CAS  PubMed  Google Scholar 

  • Gazeau F, Lévy M, Wilhelm C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine. 2008;3:831–44.

    Article  CAS  PubMed  Google Scholar 

  • Goya G, Asín L, Ibarra R. Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. Int J Hyperthermia. 2013;29:810–8.

    Article  PubMed  Google Scholar 

  • Guoa Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018;272:145–58.

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Sharma D. Evolution of magnetic hyperthermia for glioblastoma multiforme therapy. ACS Chem Neurosci. 2019;10:1157–72.

    Article  CAS  PubMed  Google Scholar 

  • Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys. 2008;103:07A307-1–3.

    Article  CAS  Google Scholar 

  • Han Y, Lei S, Lu J, He Y, Chen Z, Ren L, Zhoua X. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C. 2016;64:199–207.

    Article  CAS  Google Scholar 

  • Hejase H, Hayek S, Qadri S, Haik Y. MnZnFe nanoparticles for self-controlled magnetic hyperthermia. J Magn Magn Mater. 2012;324:3620–8.

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311:187–92.

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:S2919–34.

    Article  CAS  Google Scholar 

  • Hilger I. In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia. 2013;29:828–34.

    Article  PubMed  Google Scholar 

  • Hilger I, Hergt R, Kaiser WA. Towards breast cancer treatment by magnetic heating. J Magn Magn Mater. 2005;293:314–9.

    Article  CAS  Google Scholar 

  • Hodgson J. ADMET-turning chemicals into drugs. Nat Biotechnol. 2001;19:722–6.

    Article  CAS  PubMed  Google Scholar 

  • Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials. 2009;30:3956–60.

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Ma S, Li H, Ke X, Wang G, Wei D, Wang W. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett. 2011;2:1161–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu R, Zhang X, Liu X, Xu B, Yang H, Xia Q, Li L, Chen C, Tang J. Higher temperature improves the efficacy of magnetic fluid hyperthermia for Lewis lung cancer in a mouse model. Thorac Cancer. 2012;3:34–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang MH, Yang MC. Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Int J Pharm. 2008;346:38e46.

    Article  CAS  Google Scholar 

  • Iatridi Z, Vamvakidis K, Tsougos I, Vassiou K, Dendrinou-Samara C, Bokias G. Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications. ACS Appl Mater Interfaces. 2016;8:35059–70.

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Matsuoka F, Honda H, Kobayashi T. Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther. 2003a;10:918–25.

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayaschi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003b;96:364–9.

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 2004;212:167–75.

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Jansen AP, Verwiebe EG, Dreckschmidt NE, Wheeler DL, Oberley TD, Verma AK. Protein kinase C-epsilon transgenic mice: a unique model for metastatic squamous cell carcinoma. Cancer Res. 2001;61:808–12.

    CAS  PubMed  Google Scholar 

  • Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldofner N. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate. 2005;64:283–92.

    Article  PubMed  Google Scholar 

  • Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–62.

    Article  PubMed  Google Scholar 

  • Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78:7–14.

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy G, Sudame A, Bhati P, Chakrabarty A, Maity D. Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq. 2018;256:224–37.

    Article  CAS  Google Scholar 

  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat. 2009;113:435–41.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13:257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher MF, Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6:1342–7.

    Article  CAS  PubMed  Google Scholar 

  • Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res. 2014;31:3274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubovcikova M, Koneracka M, Strbak O, Molcana M, Zavisova V, Antal I, Khmara I, Lucanska D, Tomco L, Barathova M, Zatovicov M, Dobrota D, Pastorekova S, Kopcansky P. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J Magn Magn Mater. 2019;475:316–26.

    Article  CAS  Google Scholar 

  • Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent S, Dutz S, Häfeli U, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6:418–22.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, Jeong H, Kong BJ, Stout DB, Cheon J, Tseng HR. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed Engl. 2013;52:4384–4388.

    Article  CAS  PubMed  Google Scholar 

  • Lee YB, Song EJ, Kim SS, Kim JW, Yu DS. Safety and efficacy of a novel injectable filler in the treatment of nasolabial folds: polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose. J Cosmet Laser Ther. 2014;16:185e190.

    Google Scholar 

  • Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. Effect of HPMC and carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int J Pharm. 2003;253:13e22.

    Article  CAS  Google Scholar 

  • Li C, Chi S, Xie J. Hedgehog signaling in skin cancers. Cell Signal. 2011;23:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima-Tenório MK, Edgardo A, Pineda G, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015;493:313–27.

    Article  PubMed  CAS  Google Scholar 

  • Liu RT, Liu J, Tong JQ, Tang T, Kong WC, Wang XW, Li Y, Tang JT. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci Mater Int. 2012;22:31–9.

    Article  CAS  Google Scholar 

  • Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, Lv YB, Xiao W, Fang J, Yi JB, Zhang H, Chuang CH, Bay BH, Ding J, Fan HM. Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 Dual-Mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthcare Mater. 2016a;5:2092–104.

    Article  CAS  Google Scholar 

  • Liu Y, Kang N, Lv J, Zhou Z, Zhao Q, Ma L, Chen Z, Ren L, Nie L. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites. Adv Mater. 2016b;28:6411–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen Y, Wang G, Lv Q, Yang Y, Wang J, Zhang P, Liu J, Xie Y, Zhang L, Xie M. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials. 2018;162:200–7.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi K, Alexandros Bouras A, Dominique Bozec D, Robert Ivkov R, Constantinos HC. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 2018;34:1316–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mancuso M, Gallo D, Leonardi S, Pierdomenico M, Pasquali E, De Stefano I, Rebessi S, Tanori M, Scambia G, Di Majo V, Covelli V, Pazzaglia S, Saran A. Modulation of basal and squamous cell carcinoma by endogenous estrogen in mouse models of skin cancer. Carcinogenesis. 2009;30:340–7.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol. 2004;2(3):1–6.

    Google Scholar 

  • Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B. Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater. 2010;322:L49–52.

    Article  CAS  Google Scholar 

  • Moroz P, Jones SK, Gray BN. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol. 2002;80:149–56.

    Article  PubMed  Google Scholar 

  • Muralidhar R, Swamy GS, Vijayalakshmi P. Completion rates of anterior and posterior continuous curvilinear capsulorrhexis in pediatric cataract surgery for surgery performed by trainee surgeons with the use of a low-cost viscoelastic. Indian J Ophthalmol. 2012;60:144–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Clinical imaging in regenerative medicine. Nat Biotechnol. 2014;32:804–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles—in vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci. 2017;249:192–212.

    Article  CAS  PubMed  Google Scholar 

  • Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys. 2009;105:07B324-1–3.

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nano-particles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

    Article  CAS  Google Scholar 

  • Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly (vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. 2003;14:687e691.

    Article  Google Scholar 

  • Parhi R, Suresh P, Patnaik S. Formulation optimization of PVA/HPMC cryogel of Diltiazem HCl using 3-level factorial design and evaluation for ex vivo permeation. J Pharm Investig. 2015;45:319–27.

    Article  CAS  Google Scholar 

  • Pavel M, Stancu A. Study of the optimum injection sites for a multiple metastases region in cancer therapy by using MFH. IEEE Trans Magn. 2009;45:4825–8.

    Article  CAS  Google Scholar 

  • Pavel M, Gradinariu G, Stancu A. Study of the optimum dose of ferromagnetic nanoparticles suitable for cancer therapy using MFH. IEEE Trans Magn. 2008;44:3205–8.

    Article  Google Scholar 

  • Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B Appl Biomater. 2007;81B:12–22.

    Article  CAS  Google Scholar 

  • Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys. 2010;107:114701-1–9.

    Article  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res. 2006;8:489–96.

    Article  CAS  Google Scholar 

  • Qu Y, Li J, Ren J, Leng J, Lin C, Shi D. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of MnxZn1−xFe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl Mater Interfaces. 2014;6:16867–79.

    Article  CAS  PubMed  Google Scholar 

  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M. Magnetic nanoparticles and biosciences. Monatch Chem. 2002;133:737–59.

    Article  CAS  Google Scholar 

  • Saldívar-Ramírez MM, Sánchez-Torres CG, Cortés-Hernández DA, Escobedo-Bocardo JC, Almanza-Robles JM, Larson A, Reséndiz-Hernández PJ, Acuña-Gutiérrez IO. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J Mater Sci Mater Med. 2014;25:2229–36.

    Article  PubMed  CAS  Google Scholar 

  • Selvan ST, Tan TTY, Yi DK, Jana NR. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir. 2010;26:11631–41.

    Article  CAS  PubMed  Google Scholar 

  • Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44:4501–16.

    Article  CAS  PubMed  Google Scholar 

  • Shinkai M, Ito A. Functional magnetic particles for medical application. Adv Biochem Eng/Biotechnol. 2004;91:191–220.

    CAS  Google Scholar 

  • Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163e174.

    Article  Google Scholar 

  • Sivakumar B, Aswathy RG, Nagaoka Y, Suzuki M, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. Langmuir. 2013;29:3453–66.

    Article  CAS  PubMed  Google Scholar 

  • Smit J, Wijin HPJ. Les ferrites. Paris: Bibl Tech Philips; 1961.

    Google Scholar 

  • Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for detecting and treating cancer. Drug Develop Res. 2006;67:70–93.

    Article  CAS  Google Scholar 

  • Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer. 2005;116:624–33.

    Article  CAS  PubMed  Google Scholar 

  • Tartaj P, Veintemillas-Verdaguer S, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R182.

    Article  CAS  Google Scholar 

  • Thorat N, Bohara R, Noor MR, Dhamecha D, Soulimane T, Tofail S. Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater Sci Eng. 2017;3:1332–40.

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1476.

    Article  Google Scholar 

  • Tian X, Liu S, Zhu J, Qian Z, Bai L, Pan Y. Biofunctional magnetic hybrid nanomaterials for theranostic applications. Nanotechnology. 2019;30:032002, 10pp.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela R. Magnetic ceramics. Cambridge: Cambridge University Press; 1994. p. 137–42.

    Book  Google Scholar 

  • Wang L, Dong J, Ouyang W, Wang X, Tang J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol Rep. 2012;27:719–26.

    CAS  PubMed  Google Scholar 

  • Wang J, Zhou Z, Wang L, Wei J, Yang H, Yang S, Zhao J. CoFe2O4@MnFe2O4/polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. RSC Adv. 2015a;5:7349–55.

    Article  CAS  Google Scholar 

  • Wang P, Xie X, Wang J, Shi Y, Shen N, Huang X. Ultra-small superparamagnetic iron oxide mediated magnetic hyperthermia in treatment of neck lymph node metastasis in rabbit pyriform sinus VX2 carcinoma. Tumor Biol. 2015b;36:8035–40.

    Article  CAS  Google Scholar 

  • Wang F, Yang Y, Ling Y, Liu J, Cai X, Zhou X, Tang X, Liang B, Chen Y, Chen H, Chen D, Li C, Wang Z, Hu B, Zheng Y. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe3O4 for magnetic hyperthermia ablation of tumors. Biomaterials. 2017;128:84e93.

    Google Scholar 

  • Xue X, Huang Y, Bo R, Jia B, Wu H, Yuan Y, Wang Z, Ma Z, Jing D, Xu X, Yu W, Lin TY, Li Y. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat Commun. 2018;9:3653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanaka K, Nakahara T, Yamauchi T, Kita A, Takeuchi M. Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin Cancer Res. 2011;17:5423–31.

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Shang W, Sun X, Zhao L, Wang J, Xiong Z, Yuan J, Zhang R, Huang Q, Wang K, Li B, Tian J, Kang F, Feng SS. “All-in-One” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv Funct Mater. 2018;28:1705710-1–12.

    Google Scholar 

  • Yang HW, Hua MY, Hwang TL, Lin KJ, Huang CY, Tsai RY, Ma CC, Hsu PH, Wey SP, Hsu PW, Chen PY, Huang YC, Lu YJ, Yen TC, Feng LY, Lin CW, Liu HL, Wei KC. Non-invasive synergistic treatment of brain tumors by targeted chemotherapeutic delivery and amplified focused ultrasound-hyperthermia using magnetic nanographene oxide. Adv Mater. 2013;25:3605–11.

    Article  CAS  PubMed  Google Scholar 

  • Yi G, Gu B, Chen L. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 2014;35:2445–9.

    Article  CAS  Google Scholar 

  • Zeng Q, Baker I, Loudis JA, Liao Y, Hoopes PJ, Weaver JB. Fe∕Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia. Appl Phys Lett. 2007;90:233112.

    Article  CAS  Google Scholar 

  • Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S. Photoacoustic-enabled self-guidance in magnetic hyperthermia Fe@Fe3O4 nanoparticles for theranostics in vivo. Adv Healthcare Mater. 2018;7:e1701201.

    Article  CAS  Google Scholar 

  • Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerface. 2009;68:1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costica Caizer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caizer, C. (2019). Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. In: Rai, M., Jamil, B. (eds) Nanotheranostics. Springer, Cham. https://doi.org/10.1007/978-3-030-29768-8_14

Download citation

Publish with us

Policies and ethics