Skip to main content

Exertional Heat Stroke

  • Chapter
  • First Online:
Exertional Heat Illness

Abstract

Exertional heat stroke (EHS), defined as an internal body temperature > 40 °C with associated neuropsychiatric impairment, is a medical emergency, requiring prompt recognition, management, and care to ensure survival. Caused by a number of intrinsic (e.g., acclimatization status, cardiovascular fitness, hydration) and extrinsic (e.g., environmental conditions, clothing requirements, work-to-rest ratios) risk factors, these risk factors can create a “perfect storm” to overwhelm an individual’s thermoregulatory capacity during exercise or physical activity. In the event EHS is suspected, prompt recognition and assessment of the patient’s internal body temperature and cognitive function is vital in order to guide the proper treatment plan. When EHS is confirmed, aggressive, whole-body cooling is required to cool the patient under the critical threshold for cell damage (40.83 °C) within 30 minutes of collapse to optimize the chances of survival without long-term sequelae. Following the EHS incident, considerations must be taken in order to augment the recovery process prior to returning back to full activity/duty/work. This chapter will provide an evidence-based review of the etiology, pathophysiology, and management and care of EHS for clinicians and scientists to utilize in order to optimize the care provided to athletes, soldiers, and laborers at risk for EHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lopez RM, Jardine JF. Exertional heat illnesses. In: Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018. p. 313–30.

    Chapter  Google Scholar 

  3. Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.

    Article  PubMed  Google Scholar 

  4. Kerr ZY, Register-Mihalik JK, Pryor RR, Pierpoint LA, Scarneo SE, Adams WM, et al. The association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices. Environ Health Perspect. 2019;127(4):47003.

    Article  PubMed  Google Scholar 

  5. Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–88.

    Article  CAS  PubMed  Google Scholar 

  6. Epstein Y, Roberts WO. The pathophysiology of heat stroke: an integrative view of the final common pathway. Scand J Med Sci Sports. 2011;21(6):742–8.

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055–81.

    Article  CAS  PubMed  Google Scholar 

  8. Cannon JG. Inflammatory cytokines in nonpathological states. News Physiol Sci. 2000;15:298–303.

    CAS  PubMed  Google Scholar 

  9. Hietala J, Nurmi T, Uhari M, Pakarinen A, Kouvalainen K. Acute phase proteins, humoral and cell mediated immunity in environmentally-induced hyperthermia in man. Eur J Appl Physiol. 1982;49(2):271–6.

    Article  CAS  Google Scholar 

  10. Hammami MM, Bouchama A, Shail E, Aboul-Enein HY, Al-Sedairy S. Lymphocyte subsets and adhesion molecules expression in heatstroke and heat stress. J Appl Physiol Bethesda (1985). 1998;84(5):1615–21.

    Article  CAS  Google Scholar 

  11. Leon LR. Heat stroke and cytokines. Prog Brain Res. 2007;162:481–524.

    Article  CAS  PubMed  Google Scholar 

  12. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.

    Article  PubMed  Google Scholar 

  13. Yan Y-E, Zhao Y-Q, Wang H, Fan M. Pathophysiological factors underlying heatstroke. Med Hypotheses. 2006;67(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  14. Lin MT. Pathogenesis of an experimental heatstroke model. Clin Exp Pharmacol Physiol. 1999;26(10):826–7.

    Article  CAS  PubMed  Google Scholar 

  15. Epstein Y, Hadad E, Shapiro Y. Pathological factors underlying hyperthermia. J Therm Biol. 2004;29(7–8):487–94.

    Article  Google Scholar 

  16. Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev. 2004;32(4):185–90.

    Article  PubMed  Google Scholar 

  17. Vandermark LW, Adams WM, Asplund C, Hosokawa Y, Casa DJ. Heat stroke. In: Chopra JS, Sawhney IMS, editors. Neurology in tropics. 2nd ed. New Delhi: Reed Elsevier India; 2015. p. 896–908.

    Google Scholar 

  18. Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci. 2008;53:61–73.

    Article  PubMed  Google Scholar 

  19. Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010;109(6):1980–8.

    Article  CAS  Google Scholar 

  20. Belval LN, Casa DJ, Adams WM, Chiampas GT, Holschen JC, Hosokawa Y, et al. Consensus statement- prehospital care of exertional heat stroke. Prehosp Emerg Care. 2018;22(3):392–7.

    Article  PubMed  Google Scholar 

  21. Casa DJ, Pagnotta KD, Pinkus DP, Mazerolle SM. Should coaches be in charge of care for medical emergencies in high school sports? Athl Train Sports Health Care. 2009;1(4):144–6.

    Article  Google Scholar 

  22. Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train. 2007;42(3):333–42.

    PubMed  PubMed Central  Google Scholar 

  23. Ganio MS, Brown CM, Casa DJ, Becker SM, Yeargin SW, McDermott BP, et al. Validity and reliability of devices that assess body temperature during indoor exercise in the heat. J Athl Train. 2009;44(2):124–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller KC, Hughes LE, Long BC, Adams WM, Casa DJ. Validity of core temperature measurements at 3 rectal depths during rest, exercise, cold-water immersion, and recovery. J Athl Train. 2017;52(4):332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huggins R, Glaviano N, Negishi N, Casa DJ, Hertel J. Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis. J Athl Train. 2012;47(3):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee SM, Williams WJ, Fortney Schneider SM. Core temperature measurement during supine exercise: esophageal, rectal, and intestinal temperatures. Aviat Space Environ Med. 2000;71(9):939–45.

    CAS  PubMed  Google Scholar 

  27. Gagnon D, Lemire BB, Jay O, Kenny GP. Aural canal, esophageal, and rectal temperatures during exertional heat stress and the subsequent recovery period. J Athl Train. 2010;45(2):157–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, et al. National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train. 2012;47(1):96–118.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.

    Article  PubMed  Google Scholar 

  30. Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2002;37(3):329–43.

    PubMed  PubMed Central  Google Scholar 

  31. Casa DJ, Almquist J, Anderson SA, Baker L, Bergeron MF, Biagioli B, et al. The inter-association task force for preventing sudden death in secondary school athletics programs: best-practices recommendations. J Athl Train. 2013;48(4):546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. National Athletic Trainers’ Association. Inter-association taskforce on exertional heat illnesses consensus statement [Internet]. 2003. https://www.nata.org/sites/default/files/inter-association-task-force-exertional-heat-illness.pdf.

  33. Mazerolle SM, Scruggs IC, Casa DJ, Burton LJ, McDermott BP, Armstrong LE, et al. Current knowledge, attitudes, and practices of certified athletic trainers regarding recognition and treatment of exertional heat stroke. J Athl Train. 2010;45(2):170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nedimyer AK, Chandran A, Hirschorn RM, Adams WM, Pryor RR, Casa DJ, et al. Exertional heat stroke management strategies: a comparison of practice and intentions between athletic trainers who did and did not treat cases during high school football preseason (abstract). J Athl Train. 2019;54(6 Suppl):S-69.

    Google Scholar 

  35. Casa DJ, Kenny GP, Taylor NAS. Immersion treatment for exertional hyperthermia: cold or temperate water? Med Sci Sports Exerc. 2010;42(7):1246–52.

    Article  PubMed  Google Scholar 

  36. DeMartini JK, Casa DJ, Stearns R, Belval L, Crago A, Davis R, Jardine J. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Med Sci Sports Exerc. 2014;47(2):240–5.

    Article  Google Scholar 

  37. Adams WM, Hosokawa Y, Casa DJ. The timing of exertional heat stroke survival starts prior to collapse. Curr Sports Med Rep. 2015;14(4):273–4.

    Article  PubMed  Google Scholar 

  38. Adams WM. Exertional heat stroke within secondary school athletics. Curr Sports Med Rep. 2019;18(4):149–53.

    Article  PubMed  Google Scholar 

  39. McDermott BP, Casa DJ, Ganio MS, Lopez RM, Yeargin SW, Armstrong LE, et al. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review. J Athl Train. 2009;44(1):84–93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Casa DJ, McDermott BP, Lee EC, Yeargin SW, Armstrong LE, Maresh CM. Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc Sport Sci Rev. 2007;35(3):141–9.

    Article  PubMed  Google Scholar 

  41. Proulx CI, Ducharme MB, Kenny GP. Effect of water temperature on cooling efficiency during hyperthermia in humans. J Appl Physiol Bethesda Md (1985). 2003;94(4):1317–23.

    Article  CAS  Google Scholar 

  42. Miller KC, Truxton T, Long B. Temperate-water immersion as a treatment for hyperthermic humans wearing American football uniforms. J Athl Train. 2017;52(8):747–52.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Friesen BJ, Carter MR, Poirier MP, Kenny GP. Water immersion in the treatment of exertional hyperthermia: physical determinants. Med Sci Sports Exerc. 2014;46(9):1727–35.

    Article  PubMed  Google Scholar 

  44. Sloan RE, Keatinge WR. Cooling rates of young people swimming in cold water. J Appl Physiol. 1973;35(3):371–5.

    Article  CAS  PubMed  Google Scholar 

  45. Lemire BB, Gagnon D, Jay O, Kenny GP. Differences between sexes in rectal cooling rates after exercise-induced hyperthermia. Med Sci Sports Exerc. 2009;41(8):1633–9.

    Article  PubMed  Google Scholar 

  46. Lemire B, Gagnon D, Jay O, Dorman L, DuCharme MB, Kenny GP. Influence of adiposity on cooling efficiency in hyperthermic individuals. Eur J Appl Physiol. 2008;104(1):67–74.

    Article  PubMed  Google Scholar 

  47. Miller KC, Long BC, Edwards J. Necessity of removing American football uniforms from humans with hyperthermia before cold-water immersion. J Athl Train. 2015;50(12):1240–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miller KC, Swartz EE, Long BC. Cold-water immersion for hyperthermic humans wearing American football uniforms. J Athl Train. 2015;50(8):792–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hosokawa Y, Adams WM, Belval LN, Vandermark LW, Casa DJ. Tarp-assisted cooling as a method of whole-body cooling in hyperthermic individuals. Ann Emerg Med. 2017;69(3):347–52.

    Article  PubMed  Google Scholar 

  50. Luhring KE, Butts CL, Smith CR, Bonacci JA, Ylanan RC, Ganio MS, et al. Cooling effectiveness of a modified cold-water immersion method after exercise-induced hyperthermia. J Athl Train. 2016;51(11):946–51.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adams WM. An alternative method for treating exertional heat stroke: tarp-assisted cooling. Athl Train Sports Health Care. 2019;11(3):101–2.

    Article  Google Scholar 

  52. Goddard CJ, Warnes TW. Raised liver enzymes in asymptomatic patients: investigation and outcome. Dig Dis Basel Switz. 1992;10(4):218–26.

    Article  CAS  Google Scholar 

  53. American College of Sports Medicine, Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, et al. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.

    Article  Google Scholar 

  54. Poussel M, Guerci P, Kaminsky P, Heymonet M, Roux-Buisson N, Faure J, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link? J Athl Train. 2015;50(11):1212–4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One. 2015;10(8):e0135496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Epstein Y. Heat intolerance: predisposing factor or residual injury? Med Sci Sports Exerc. 1990;22(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  57. Moran DS, Erlich T, Epstein Y. The heat tolerance test: an efficient screening tool for evaluating susceptibility to heat. J Sport Rehabil. 2007;16(3):215–21.

    Article  PubMed  Google Scholar 

  58. Schermann H, Heled Y, Fleischmann C, Ketko I, Schiffmann N, Epstein Y, et al. The validity of the heat tolerance test in prediction of recurrent exertional heat illness events. J Sci Med Sport. 2018;21(6):549–52.

    Article  PubMed  Google Scholar 

  59. Druyan A, Amit D, Makranz C, Moran D, Yanovich R, Epstein Y, et al. Heat tolerance in women—reconsidering the criteria. Aviat Space Environ Med. 2012;83(1):58–60.

    Article  PubMed  Google Scholar 

  60. Lisman P, Kazman JB, O’Connor FG, Heled Y, Deuster PA. Heat tolerance testing: association between heat intolerance and anthropometric and fitness measurements. Mil Med. 2014;179(11):1339–46.

    Article  PubMed  Google Scholar 

  61. Druyan A, Ketko I, Yanovich R, Epstein Y, Heled Y. Refining the distinction between heat tolerant and intolerant individuals during a heat tolerance test. J Therm Biol. 2013;38(8):539–42.

    Article  Google Scholar 

  62. Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018.

    Google Scholar 

  63. Johnson EC, Kolkhorst FW, Richburg A, Schmitz A, Martinez J, Armstrong LE. Specific exercise heat stress protocol for a triathlete’s return from exertional heat stroke. Curr Sports Med Rep. 2013;12(2):106–9.

    Article  PubMed  Google Scholar 

  64. Mee JA, Doust J, Maxwell NS. Repeatability of a running heat tolerance test. J Therm Biol. 2015;49–50:91–7.

    Article  PubMed  Google Scholar 

  65. Roberts WO, Dorman JC, Bergeron MF. Recurrent heat stroke in a runner: race simulation testing for return to activity. Med Sci Sports Exerc. 2016;48(5):785–9.

    Article  PubMed  Google Scholar 

  66. Hursel R, Westerterp-Plantenga MS. Thermogenic ingredients and body weight regulation. Int J Obes. 2010;34(4):659–69.

    Article  CAS  Google Scholar 

  67. Lyons J, Allsopp A, Bilzon J. Influences of body composition upon the relative metabolic and cardiovascular demands of load-carriage. Occup Med (Lond). 2005;55(5):380–4.

    Article  Google Scholar 

  68. Ricciardi R, Deuster PA, Talbot LA. Metabolic demands of body armor on physical performance in simulated conditions. Mil Med. 2008;173(9):817–24.

    Article  PubMed  Google Scholar 

  69. Vaughan RA, Conn CA, Mermier CM. Effects of commercially available dietary supplements on resting energy expenditure: a brief report. ISRN Nutr. 2014;2014:650264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Adams WM, Belval LN. Return-to-activity following exertional heat stroke. Athl Train Sports Health Care. 2018;10(1):5–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adams, W.M., Stearns, R.L., Casa, D.J. (2020). Exertional Heat Stroke. In: Adams, W., Jardine, J. (eds) Exertional Heat Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-27805-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27805-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27804-5

  • Online ISBN: 978-3-030-27805-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics