Skip to main content

Design and Finite Element Analysis of Fiber-Reinforced Soft Pneumatic Actuator

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11740))

Abstract

Soft fluid actuators consisting of the flexible materials are of particular interest to the robotics field because of the low cost and the potential applications, which can be easily customized to a given devices. However, the great potential of such actuators is currently limited due to that their designs are mostly based on experience. In this paper, we designed and manufactured a fiber-reinforced soft pneumatic actuator. Through ingenious design, the actuator can produce bending movement under low pressure, which has simple structure, convenient fabrication and low cost. This paper provides a finite-element method (FEM) model for the bending of the fiber-reinforced soft pneumatic actuator in the free space, which can present a more realistic description of the nonlinear response of the system. With the FEM model, the deformation and stress of the soft actuators can be visualized readily, leading to a better understanding about the influence of geometric parameters, input air pressure and material selection on bending angel performance. Finally, corresponding experiments have also been taken, successfully demonstrating the validity of the FEM model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. Int. Ed. Engl. 50(8), 1890–1895 (2011). https://doi.org/10.1002/anie.201006464

    Article  Google Scholar 

  2. Shepherd, R.F., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108(51), 20400–20403 (2011). https://doi.org/10.1073/pnas.1116564108

    Article  Google Scholar 

  3. Seok, S., Onal, C.D., Wood, R., Rus, D., Kim, S.: Peristaltic locomotion with antagonistic actuators in soft robotics, pp. 1228–1233. IEEE (2010)

    Google Scholar 

  4. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot, pp. 4975–4980. IEEE (2007)

    Google Scholar 

  5. Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28(2), 231–238 (2016). https://doi.org/10.1002/adma.201504264

    Article  Google Scholar 

  6. Shen, Q., Trabia, S., Stalbaum, T., Palmre, V., Kim, K., Oh, I.: A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Sci. Rep.-U.K. 6(1), 24462 (2016). https://doi.org/10.1038/srep24462

    Article  Google Scholar 

  7. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012). https://doi.org/10.1163/156855312X626343

    Article  Google Scholar 

  8. Firouzeh, A., Salerno, M., Paik, J.: Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF actuation, pp. 1117–1124. IEEE (2015)

    Google Scholar 

  9. Carpi, F., Bauer, S., De Rossi, D.: Materials science. Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010). https://doi.org/10.1126/science.1194773

    Article  Google Scholar 

  10. Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. U.S.A 107(10), 4505–4510 (2010). https://doi.org/10.1073/pnas.0913461107

    Article  Google Scholar 

  11. Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 26007 (2011). https://doi.org/10.1088/1748-3182/6/2/026007

    Article  Google Scholar 

  12. Onal, C.D., Rus, D.: A modular approach to soft robots, pp. 1038–1045. IEEE (2012)

    Google Scholar 

  13. Shepherd, R.F., et al.: Using explosions to power a soft robot. Angew. Chem. Int. Ed. Engl. 52(10), 2892–2896 (2013). https://doi.org/10.1002/anie.201209540

    Article  Google Scholar 

  14. Brown, E., et al.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. U.S.A 107(44), 18809–18814 (2010). https://doi.org/10.1073/pnas.1003250107

    Article  Google Scholar 

  15. Martinez, R.V., et al.: Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25(2), 205–212 (2013). https://doi.org/10.1002/adma.201203002

    Article  MathSciNet  Google Scholar 

  16. Chou, C., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996). https://doi.org/10.1109/70.481753

    Article  Google Scholar 

  17. Kang, B., Kothera, C.S., Woods, B.K.S., Wereley, N.M.: Dynamic modeling of Mckibben pneumatic artificial muscles for antagonistic actuation, pp. 182–187. IEEE (2009)

    Google Scholar 

  18. Bishop-Moser, J., Krishnan, G., Kim, C., Kota, S.: Design of soft robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures in parallel combinations, pp. 4264–4269. IEEE (2012)

    Google Scholar 

  19. Roche, E.T., et al.: A bioinspired soft actuated material. Adv. Mater. 26(8), 1200–1206 (2014). https://doi.org/10.1002/adma.201304018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 61801122), the Natural Science Foundation of Fujian Province (Grant No. 2018J01762) and the Science Project of Fujian Education Department (Grant No. JK2017002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ligang Yao or Zongxing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, X., Zhan, Z., Cai, Y., Yao, L., Lu, Z. (2019). Design and Finite Element Analysis of Fiber-Reinforced Soft Pneumatic Actuator. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11740. Springer, Cham. https://doi.org/10.1007/978-3-030-27526-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27526-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27525-9

  • Online ISBN: 978-3-030-27526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics