Skip to main content

Affordable and Clean Energy: A Study on the Advantages and Disadvantages of the Main Modalities

  • Chapter
  • First Online:
International Business, Trade and Institutional Sustainability

Abstract

The purpose of this study is to identify several renewable and clean energy sources and investigate their accessibility. The structuring of the energetic sources was outlined to display the advantages and disadvantages of their use. To do so, the literature review method and the snowball method were used as the research methodology. Previous results had determined the elements of a sample of the main existing forms of energy. Therefore, this research analysed the following sources: solar energy, wind energy, hydroelectric power, thermoelectric energy with renewable fuels, tidal energy, biogas energy, geothermal energy and hydrogen energy. The results discuss the benefits of using sustainable energies, such as being helpful to the environment, as well as the implementation obstacles that, in this case, are stripped down to the high financial cost of initial investment. Because no previous research provided a structure to compare different energy forms, this study is expected to act as an initial guide for researchers and professionals in the field. As a limitation and recommendation for future research efforts, it is suggested to discover and verify mechanisms capable of reducing the high initial investment costs associated with sustainable energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsaad M, El-Suleiman A, Nasir A (2013) An assessment of wind energy resource in north central Nigeria, Plateau. Sci J Energy Eng 3:13–17

    Google Scholar 

  • Alsaad M (2013) Wind energy potential in selected areas in Jordan. Energy Convers Manag 65:704–708

    Article  Google Scholar 

  • Atwater J, Lawrence G (2011) Regulatory, design and methodological impacts in determining tidal-in-stream power resource potential. Energy Policy 39(3):1694–1698

    Article  Google Scholar 

  • Arboit NKS et al (2013) Potencialidade de utilização de energia geotérmica no Brasil—umarevisão de literatura. Revista do Departamento de Geografia—USP 26:155–168

    Google Scholar 

  • Baldin N, Munhoz BME (2011) Educação Ambiental Comunitária: umaexperiência com a técnica de pesquisa snowball (bola de neve). Revista Eletrônica do Mestrado em EducaçãoAmbiental, 27

    Google Scholar 

  • Balje OE (1981) Turbo-machines, a guide to design, selection and theory. Wiley

    Google Scholar 

  • Bhattacharya M, Paramati RS, Ozturk I, Bhattacharya S (2016) The effect of renewable energy consumption on economic growth: evidence from top 38 countries. Energy Appl 162:733–74

    Article  Google Scholar 

  • Bartle A (2002) Hydropower potential and development activities. Energy Policy 30(14):1231–1239

    Article  Google Scholar 

  • Bell L (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461

    Article  Google Scholar 

  • Brasil (2016) em: http://www.brasil.gov.br/meio-ambiente/2015/11/com-proposta-mais-ambiciosa-Brasil-chega-a-COP21-como-importante-negociador-mundial-do-clima (Last accessed 10 June 2016)

  • Budzianowski WM (2012) Sustainable biogas energy in Poland: prospects and challenges. Renew Sustain Energy Rev 16:342–34

    Article  Google Scholar 

  • Chen Z, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci: Mater Int 22(6):535–549

    Article  Google Scholar 

  • Campos AF, Scarpati CBL, Santos LT, Pagel UR, Souza VHA (2017) Um panorama sobre a energiageotérmica no Brasil e no Mundo: Aspectosambientais e econômicos. RevistaEspacios 38(1):8. https://www.revistaespacios.com/a17v38n01/a17v38n01p08.pdf

  • Coelho ST, Velazquez SMSG, da Silva OC, Varkulya A, Pecora V (2004) Programa de uso racional de energia e fontes alternativas. Enc Energ Meio Rural, 5

    Google Scholar 

  • Date A, Date A, Akbarzadeh A (2013) Investigating the potential for using a simple water reaction turbine for power production from low head hydro resources. Energy Convers Manag 66:257–270

    Article  Google Scholar 

  • Devine-Wright P (2011) Enhancing local distinctiveness fosters public acceptance of tidal energy: a UK case study. Energy Policy 39(1):83–93

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH Verlag, Weinheim. https://doi.org/10.1002/9783527621705

  • Dincer F (2011) The analysis on wind energy electricity generation status, potential and policies in the world. Renew Sustain Energy Rev 15(9):5135–5142

    Article  Google Scholar 

  • Fagan E, Kennedy C, Leen S, Goggins J (2016) Damage mechanics based design methodology for tidal current turbine composite blades. Renew Energy 97:358–372

    Article  Google Scholar 

  • Fang H (2014) Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago. Renew Energy 67:237–241

    Article  Google Scholar 

  • FIESP (2018) Federação das Industrias do Estado de São Paulo. http://www.fiesp.com.br/noticias/matriz-100-renovavel-no-brasil-em-2050-e-viavel-mostra-greenpeace-na-fiesp. (Last accessed 17 July 2018)

  • Frey G, Linke D (2002) Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way. Energy Policy 30(14):1261–1265

    Article  Google Scholar 

  • Gou X, Xiao H, Yang S (2010) Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energy 87(10):3131–3136

    Article  Google Scholar 

  • Greenpeace (2018) http://www.greenpeace.org/brasil/pt/Blog/15-graus-celsius-na-veia-100-energia-renovvel/blog/55060/. (Last accessed 01 Oct 2018)

  • Harding S, Bryden I (2012) Directionality in prospective Northern UK tidal current energy deployment sites. Renew Energy 44:474–477

    Article  Google Scholar 

  • Hernandez RR et al (2014) Environmental impacts of utility-scale solar energy. Renew Sustain Energy Rev 29:766–779

    Article  Google Scholar 

  • Hongtao L, Wenjia L (2018) The analysis of effects of clean energy power generation. Energy Procedia 152:947–952

    Article  Google Scholar 

  • IEA (2002) International energy agency. World Energy Outlook, IEA/OECD, Paris

    Google Scholar 

  • IHA (2000) International Hydropower Association, ICOLD (International Commission on Large Dams), IAHTP IEA (Implementing Agreement on Hydropower and Programmes, IEA), CHA (Canadian Hydropower Association), 2000. Hydropower and world’s energy future, pp 1–14

    Google Scholar 

  • Ilkılıç C, Aydın H, Behçet R (2011) The current status of wind energy in Turkey and in the world. Energy Policy 39(2):961–967

    Article  Google Scholar 

  • İlkiliç C, Türkbay İ (2010) Determination and utilization of wind energy potential for Turkey. Renew Sustain Energy Rev 14:2202–2207

    Article  Google Scholar 

  • Kanoglu M, Yilmaz C, Abusoglu A (2016) Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle. Int J Hydrogen Energy 41(26):11185–11200

    Article  Google Scholar 

  • Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH (2018) Solar energy: potential and future prospects. Renew Sustain Energy Rev 82:894–900

    Article  Google Scholar 

  • Kendir T, Ozdamar A (2013) Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants. Renew Energy 60:323–331

    Article  Google Scholar 

  • Kim W, Zide J, Gossard A et al (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96:4

    Google Scholar 

  • Koch F Hydropower (2002) The politics of water and energy: introduction and overview. Energy Policy 30(14):1207–1213

    Article  Google Scholar 

  • Lima AR (2012) A produção de energias renováveis e o desenvolvimento sustentável: uma análise no cenário da mudança do clima. Revista Eletrônica de Direito Energia 5:4

    Google Scholar 

  • Maroufmashat A, Fowler M, SattariKhavas S et al (2016) Mixed integer linear programing based approach for optimal planning and operation of a smart urban energy network to support the hydrogen economy. Int J Hydrogen Energy 41(19):7700–7716

    Article  Google Scholar 

  • Marques S (2007) Energias fosseis versus energias renováveis: proposta de intervenção de educação ambiental no 1º ciclo do Ensino básico. Dissertação (Mestrado) em Estudos da Criança, Universidade do Minho, Braga. http://hdl.handle.net/1822/7275

  • Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16(5):3024–3033

    Article  Google Scholar 

  • Morken J, Sapci Z (2013) Evaluating biogas in Norway—bioenergy and greenhouse gas reduction potentials. Agric Eng Int CIGR J 15(2):13

    Google Scholar 

  • Neill S, Hashemi M, Lewis M (2016) Tidal energy leasing and tidal phasing. Renew Energy 85:580–587

    Article  Google Scholar 

  • Northrup JM, Wittemyer G (2013) Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol Lett 16(1):112–125

    Article  Google Scholar 

  • O’Rourke F, Boyle F, Reynolds A (2010) Tidal energy update 2009. Appl Energy 87(2):398–409

    Article  Google Scholar 

  • Oud E (2002) The evolving context for hydropower development. Energy Policy 30(14):1215–1223

    Article  Google Scholar 

  • Pacheco F (2006) Energias renováveis: breves conceitos. Conjuntura e Planejamento 149:4–11

    Google Scholar 

  • Rabelo JL, de Oliveira JN, de Rezende RJ, Wendland E (2002) Aproveitamento da energia geotérmica do sistema Aqüífero Guarani: estudo de caso. In: XII Congresso Brasileiro De Águas Subterrâneas. Florianópolis

    Google Scholar 

  • Riffat S, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935

    Article  Google Scholar 

  • Rowe D, Min G (1998) Evaluation of thermoelectric modules for power generation. J Power Sources 73(2):193–198

    Article  Google Scholar 

  • Slattery M, Johnson B, Swofford J, Pasqualetti M (2012) The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains. Renew Sustain Energy Rev 16 (6):3690–3701

    Google Scholar 

  • Tabassum A, Premalatha M, Abbasi T, Abbasi SA (2014) Wind energy: increasing deployment, rising environmental concerns. Renew Sustain Energy Rev 31:270–288

    Google Scholar 

  • United Nations (2018a) https://nacoesunidas.org/pos2015/. (Last accessed: 01 Sept 2018)

  • United Nations (2018b) http://www.onu.org.br/rio20/documentos/. (Last accessed: 01 June 2018)

  • Vichi FM, Mansor MTC (2009) Energia, meio ambiente e economia: o Brasil no context mundial. Quim Nova 32(3):757–767. https://doi.org/10.1590/S0100-40422009000300019

    Article  Google Scholar 

  • Walker S, Mukherjee U, Fowler M, Elkamel A (2016) Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. Int J Hydrogen Energy 41(19):7717–7731

    Article  Google Scholar 

  • WCD (World Commission on Dams) (2000) Dams and development—A new framework for decision making. Earthscan, London

    Google Scholar 

  • Yuksek O, Komurcu M, Yuksel I, Kaygusuz K (2006) The role of hydropower in meeting Turkey’s electric energy demand. Energy Policy 34(17):3093–3103

    Article  Google Scholar 

  • Yüksel I (2010) Energy production and sustainable energy policies in Turkey. Renew Energy 35(7):1469–1476

    Article  Google Scholar 

  • Zhang F, Zhao P, Niu M, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 41:14535–14

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Carpejani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carpejani, P. et al. (2020). Affordable and Clean Energy: A Study on the Advantages and Disadvantages of the Main Modalities. In: Leal Filho, W., Borges de Brito, P., Frankenberger, F. (eds) International Business, Trade and Institutional Sustainability. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26759-9_35

Download citation

Publish with us

Policies and ethics