Skip to main content

Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval

  • Chapter
  • First Online:
Quantum-Like Models for Information Retrieval and Decision-Making

Abstract

This chapter contains a brief introduction to the mathematical formalism and axiomatics of quantum mechanics (QM). Recently quantum mathematics and methodology started to be widely used for modeling decision making for humans and AI-systems, including quantum-like modeling information retrieval. Experts in such areas do not go deeply into the details of quantum theory. Moreover, typically such consumers of quantum theory do not use all its components. Quantum measurement theory is the most useful for application, including information retrieval. The main issue is the quantum treatment of incompatible observables represented mathematically by noncommuting Hermitian operators. At the level of statistical data incompatibility is represented as interference of probabilities, in the form of modification of the formula of total probability by adding the interference term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, for example, [1,2,3,4,5,6,7,8,9,10, 15, 27, 28, 32, 38,39,40,41, 43,44,45,46,47,48, 55, 57].

  2. 2.

    In mathematical texts one typically considers linearity with respect to the first argument. Thus a mathematician has to pay attention to this difference.

  3. 3.

    To simplify formulas, we shall not put the operator-label “hat” in the symbols denoting projectors, i.e., \(P\equiv \widehat {P}.\)

  4. 4.

    Thus states are given by elements of the unit sphere of the Hilbert space H.

  5. 5.

    Here it is convenient to use this symbol, not just write as Ψ(x, y) = ψ(x)ϕ(y).

References

  1. Aerts, D., Sozzo, S., & Tapia, J. (2012). A quantum model for the Ellsberg and Machina Paradoxes. Quantum Interaction Lecture Notes in Computer Science, 7620, 48–59.

    Article  MathSciNet  Google Scholar 

  2. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015). Quantum information biology: From information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Foundations of Physics, 45(10), 1362–1378.

    Article  MathSciNet  Google Scholar 

  3. Asano, M., Basieva, I., Khrennikov, A., & Yamato, I. (2017). A model of differentiation in quantum bioinformatics. Progress in Biophysics and Molecular Biology, 130(Part A), 88–98.

    Google Scholar 

  4. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Tanaka, Y. (2017). A quantum-like model of selection behavior. Journal of Mathematical Psychology, 78, 2–12.

    Article  MathSciNet  Google Scholar 

  5. Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2014). Violation of contextual generalization of the Leggett-Garg inequality for recognition of ambiguous figures. Physica Scripta, T163, 014006.

    Article  Google Scholar 

  6. Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015). Quantum adaptivity in biology: From genetics to cognition. Heidelberg: Springer.

    MATH  Google Scholar 

  7. Ballentine, L. E. (1989). The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42, 358–381.

    Article  Google Scholar 

  8. Ballentine, L. E. (1998). Quantum mechanics: A modern development. Singapore: WSP.

    Book  Google Scholar 

  9. Ballentine, L. E. (2001). Interpretations of probability and quantum theory. In A. Y. Khrennikov (Ed.), Foundations of probability and physics. Quantum probability and white noise analysis (Vol. 13, pp. 71–84). Singapore: WSP.

    Google Scholar 

  10. Basieva, I., Khrennikova, P., Pothos, E. M., Asano, M., & Khrennikov, A. (2018). Quantum-like model of subjective expected utility. Journal of Mathematical Economics, 78, 150–162.

    Article  MathSciNet  Google Scholar 

  11. Birkhoff, J., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823–843.

    Article  MathSciNet  Google Scholar 

  12. Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physics Review, 48, 696–702.

    Article  Google Scholar 

  13. Bohr, N. (1938). The causality problem in atomic physics. In J. Faye & H. J. Folse (Eds.) (1987). The philosophical writings of Niels Bohr. Causality and Complementarity, Supplementary Papers (Vol. 4, pp. 94–121). Woodbridge: Ox Bow Press.

    Google Scholar 

  14. Bohr, N. (1987). The philosophical writings of Niels Bohr (Vol. 3). Woodbridge: Ox Bow Press.

    Google Scholar 

  15. Broekaert, J., Basieva, I., Blasiak, P., & Pothos, E. M. (2017). Quantum dynamics applied to cognition: A consideration of available options. Philosophical Transactions of the Royal Society A, 375(2016), 375–405.

    MathSciNet  MATH  Google Scholar 

  16. Brukner, C., & Zeilinger, A. (1999). Malus’ law and quantum information. Acta Physica Slovaca, 49(4), 647–652.

    MATH  Google Scholar 

  17. Brukner, C., & Zeilinger, A. (2009). Information invariance and quantum probabilities. Foundations of Physics, 39, 677–689.

    Article  MathSciNet  Google Scholar 

  18. Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. Chiribella, G., D’Ariano, G. M. & Perinotti, P. (2010). Probabilistic theories with purification. Physical Review A, 81, 062348.

    Article  Google Scholar 

  20. D’ Ariano, G. M. (2007). Operational axioms for quantum mechanics. In: Adenier et al. (Eds.), Foundations of probability and physics-3. AIP conference proceedings (Vol. 889, pp. 79–105).

    Google Scholar 

  21. Dirac, P. A. M. (1995). The principles of quantum mechanics. Oxford: Clarendon Press.

    Google Scholar 

  22. Feynman, R., & Hibbs, A. (1965). Quantum mechanics and path integrals. New York: McGraw-Hill.

    MATH  Google Scholar 

  23. Feynman, R. P. (1951). The concept of probability in quantum mechanics. In Proceedings of the second Berkeley symposium on mathematical statistics and probability (pp. 533–541). California: University of California Press.

    Google Scholar 

  24. Frommholz, I., Larsen, B., Piwowarski, B., Lalmas, M., Ingwersen, P., & van Rijsbergen, K. (2010). Supporting polyrepresentation in a quantum-inspired geometrical retrieval framework. In IIiX’10 (pp. 115–124).

    Google Scholar 

  25. Fuchs, C. A. (2002). Quantum mechanics as quantum information (and only a little more). In A. Khrennikov (Ed.), Quantum theory: Reconsideration of foundations. Series mathematical modeling (Vol. 2, pp. 463–543). Växjö: Växjö University Press.

    Google Scholar 

  26. Fuchs, C. A., Mermin, N. D., & Schack, R. (2014). An Introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82, 749.

    Article  Google Scholar 

  27. Haven, E., & Khrennikov, A. (2009). Quantum mechanics and violation of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 53, 378–388.

    Article  MathSciNet  Google Scholar 

  28. Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  29. Khrennikov, A. (2009). Interpretations of probability (2nd ed.). Tokyo/Berlin: VSP International SC Publisher/De Gruyter.

    Book  Google Scholar 

  30. Khrennikov, A. Y. (2001). Linear representations of probabilistic transformations induced by context transitions. Journal of Physics A: Mathematical and General, 34, 9965–9981.

    Article  MathSciNet  Google Scholar 

  31. Khrennikov, A. Y. (2001). Origin of quantum probabilities. In A. Khrennikov (Ed.), Foundations of probability and physics (pp. 180–200). Singapore: Växjö-2000/WSP.

    Google Scholar 

  32. Khrennikov, A. (2004). Information dynamics in cognitive, psychological, social, and anomalous phenomena. Fundamental theories of physics. Dordrecht: Kluwer.

    Book  Google Scholar 

  33. Khrennikov, A. (2004). Växjö interpretation-2003: Realism of contexts. In Proceeding International Conference Quantum Theory: Reconsideration of Foundations. Mathematical Modelling in Physics and Engineering, and Cognitive Science (Vol. 10, pp. 323–338). Växjö: Växjö University Press.

    Google Scholar 

  34. Khrennikov, A. (2005). Reconstruction of quantum theory on the basis of the formula of total probability. In AIP Conference Proceeding of the Foundations of Probability and Physics—3 (Vol. 750, pp. 187–218). Melville: American Institute of Physics.

    Google Scholar 

  35. Khrennikov, A. (2005). The principle of supplementarity: A contextual probabilistic viewpoint to complementarity, the interference of probabilities, and the incompatibility of variables in quantum mechanics. Foundations of Physics, 35(10), 1655–1693.

    Article  MathSciNet  Google Scholar 

  36. Khrennikov, A. (2008). Algorithm for quantum-like representation: Transformation of probabilistic data into vectors on Bloch’s sphere. Open Systems and Information Dynamics, 15, 223–230.

    Article  MathSciNet  Google Scholar 

  37. Khrennikov, A. ( 2009). Contextual approach to quantum formalism. Berlin: Springer.

    Book  Google Scholar 

  38. Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finances. Berlin: Springer.

    Book  Google Scholar 

  39. Khrennikov, A. (2015). Quantum-like model of unconscious-conscious dynamics. Frontiers in Psychology, 6. Art. 997.

    Google Scholar 

  40. Khrennikov, A. (2015). Towards information lasers. Entropy, 17(10), 6969–6994.

    Article  MathSciNet  Google Scholar 

  41. Khrennikov, A. (2015). Quantum version of Aumann’s approach to common knowledge: Sufficient conditions of impossibility to agree on disagree. Journal of Mathematical Economics, 60, 89–104.

    Article  MathSciNet  Google Scholar 

  42. Khrennikov, A. (2016). Analog of formula of total probability for quantum observables represented by positive operator valued measures. International Journal of Theoretical Physics, 55, 859–3874.

    Article  MathSciNet  Google Scholar 

  43. Khrennikov A. Yu. (2016). Probability and randomness: Quantum versus classical. Singapore: World Scientific.

    Book  Google Scholar 

  44. Khrennikov, A. (2016). Quantum Bayesianism as the basis of general theory of decision-making. Philosophical Transactions of the Royal Society A, 374, 20150245.

    Article  MathSciNet  Google Scholar 

  45. Khrennikova, P. (2016, April). Quantum dynamical modeling of competition and cooperation between political parties: The coalition and non-coalition equilibrium model. Journal of Mathematical Psychology, 71, 39–50.

    Article  MathSciNet  Google Scholar 

  46. Khrennikov, A., & Basieva, I. (2014). Quantum model for psychological measurements: From the projection postulate to interference of mental observables represented as positive operator valued measures. NeuroQuantology, 12, 324–336.

    Article  Google Scholar 

  47. Khrennikova, P., & Haven, E. (2016). Instability of political preferences and the role of mass-media: a dynamical representation in a quantum framework. Philosophical Transactions of the Royal Society A, 374, 20150106.

    Article  Google Scholar 

  48. Khrennikova, P., Haven, E., & Khrennikov, A. (2014) An application of the theory of open quantum systems to model the dynamics of party governance in the US political System. International Journal of Theoretical Physics, 53(4), 1346–1360.

    Article  MathSciNet  Google Scholar 

  49. Kolmolgoroff, A. N. (1933). Grundbegriffe der wahrscheinlichkeitsrechnung. Berlin: Springer.

    Book  Google Scholar 

  50. Kolmolgorov, A. N. (1956). Foundations of the probability theory. New York: Chelsea Publishing Company.

    Google Scholar 

  51. Melucci, M. (2013). Deriving a quantum information retrieval basis. The Computer Journal, 56(11), 1279–1291.

    Article  Google Scholar 

  52. Melucci, M. (2015). Introduction to information retrieval and quantum mechanics. Berlin: Springer.

    Book  Google Scholar 

  53. Plotnitsky, A. (2012). Niels Bohr and complementarity: An introduction. Berlin: Springer.

    Book  Google Scholar 

  54. Plotnitsky, A., & Khrennikov, A. (2015). Reality without realism: On the ontological and epistemological architecture of quantum mechanics. Foundations of Physics, 45(10), 269–1300.

    MathSciNet  MATH  Google Scholar 

  55. Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability explanation for violation of rational decision theory. Proceedings of the Royal Society B, 276, 2171–2178.

    Google Scholar 

  56. Song, D., Lalmas, M., van Rijsbergen, C. J., Frommholz, I., Piwowarski, B., Wang, J., et al. (2010). How quantum theory is developing the field of information retrieval? In Quantum informatics for cognitive, social, and semantic processes: Papers from the AAAI fall symposium (FS-10-08) (pp. 105–108).

    Google Scholar 

  57. Sozzo, S. (2014). A Quantum probability explanation in Fock space for borderline contradictions. Journal of Mathematical Psychology, 58(1), 1–12.

    Article  MathSciNet  Google Scholar 

  58. van Rijsbergen, C. J. (2004). The geometry of information retrieval. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  59. van Rijsbergen, C. J. (2011). What is Quantum information retrieval? In G. Amati, F. Crestani, (Eds.), Advances in information retrieval theory. ICTIR 2011. Lecture notes in computer science (Vol. 6931). Berlin: Springer.

    Google Scholar 

  60. von Neuman, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  61. von Neumann, J., & Morgenstern, O. (1953). Theory of games and economic behavior. Princeton: Princeton University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khrennikov, A. (2019). Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval. In: Aerts, D., Khrennikov, A., Melucci, M., Toni, B. (eds) Quantum-Like Models for Information Retrieval and Decision-Making. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-25913-6_4

Download citation

Publish with us

Policies and ethics