Skip to main content

Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran

  • Chapter
  • First Online:
Gully Erosion Studies from India and Surrounding Regions

Abstract

Soil erosion is a serious problem affecting most of the countries. This study was carried out in Gorganrood Watershed (Iran), which extends for 10,197 km2 and is severely affected by gully erosion. A gully headcut inventory map consisting of 307 gully headcut points was provided by Google Earth images, field surveys, and national reports. Gully conditioning factors including significant geo-environmental and morphometric variables were selected as predictors. Maximum entropy (ME) model was exploited to model gully susceptibility, whereas the area under the ROC curve (AUC) and drawing receiver operating characteristic (ROC) curves were employed to evaluate the performance of the model.

The highly acceptable predictive skill of the ME model confirms the reliability of the procedure adopted to using this model in other gully erosion studies, as they are qualified to rapidly producing accurate and robust GESMs (gully erosion susceptibility maps) for making decisions and management of soil and water. The result is useful for local administrators to recognize the areas that are most susceptible to gully erosion and to best allocate resources for soil conservation approaches.

Three different sample datasets including 70% for training and 30% for validation were randomly prepared to evaluate the robustness of the model for gully erosion. The accuracy of the predictive model was evaluated by drawing ROC curves and by calculating the area under the ROC curve (AUC). The ME model performed excellently both in the degree of fitting and in predictive performance (AUC values well above 0.8), which resulted in accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer, G.E.B., Saltelli, A., Sobol, I. M., 1997. Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58(2), 99-120

    Article  Google Scholar 

  • Angileri, S.E., Conoscenti, C., Hochschild, V., Märker, M., Rotigliano, E., & Agnesi, V., 2016. Water erosion susceptibility mapping by applying stochastic gradient treeboost to the imera Meridionale River basin (Sicily, Italy). Geomorphology, 262, 61-76.

    Google Scholar 

  • Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Gottinger Geographische Abhandlungen, 115, 13-28

    Google Scholar 

  • Boubli, J. P., De Lima, M.G., 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a maximum entropy algorithm. International Journal of Primatology, 30(2), 217-228.

    Article  Google Scholar 

  • Baldwin, R.A., 2009. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866.

    Article  Google Scholar 

  • Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B., 2012. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199–211.

    Google Scholar 

  • Ballabio, C., & Sterlacchini, S., 2012. Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical geosciences, 44(1), 47-70.

    Google Scholar 

  • Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res, 20, 682–690.

    Article  Google Scholar 

  • Chang-Jo, F.C., Fabbri, A.G., 2003. Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30 (3), 451–472.

    Article  Google Scholar 

  • Chaplot, V., Giboire, G., Marchand, P., Valentin, C., 2005. Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos. Catena, 63(2-3), 318-328. doi:https://doi.org/10.1016/j.catena.2005.06.008

    Article  Google Scholar 

  • [CONRWMGP] Central Office of Natural Resources and Watershed Management in Golestan Province., 2009. Detailed action plan, Iran, pp 230.

    Google Scholar 

  • Chen, Y., Lawless, C., Gillespie, C.S., Wu, J., Boys, R.J., Wilkinson, D.J., 2010. CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models. Briefings in bioinformatics, 11(3), 278-289.

    Article  Google Scholar 

  • Convertino, M., Muñoz-Carpena, R., Chu-Agor, M.L., Kiker, G.L., Linkov, I., 2014. Untangling drivers of species distributions: global sensitivity and uncertainty analyses of MAXENT. Environmental Modelling & Software, 51, 296–309.

    Google Scholar 

  • Conoscenti, C., Agnesi, V., Angileri, S., Cappadonia, C., Rotigliano, E., Märker, M., 2013. A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci, 70,1179-1195.

    Article  Google Scholar 

  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., Märker, M., 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204(1), 399–411.

    Article  Google Scholar 

  • Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., & Agnesi, V., 2015. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology, 242, 49-64.

    Google Scholar 

  • Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N.A., Lombardo, L. and Agnesi, V., 2016. Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 261, 222–235.

    Article  Google Scholar 

  • Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F., 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards, 56(3), 881-898.

    Google Scholar 

  • Cama, M., Lombardo, L., Conoscenti, C., Rotigliano, E., 2017. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology, 288, 52–65.

    Article  Google Scholar 

  • Douaik, M., Phillips, S., Schapire, R., 2004. Performance guarantees for regularized maximum entropy density estimation. Proceedings of the 17th Annual Conference on Computational Learning Theory. Springer, Berlin, Heidelberg, pp. 655–662.

    Google Scholar 

  • Douaik, A., Meirvenne, M.V., Tόth, T., 2005. Soil salinity mapping using spatio-temporal Kriging and Bayesian maximum entropy with interval soft data. Geoderma, 128, 234–248.

    Article  Google Scholar 

  • Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C., Nogués-Bravo, D., Araújo, M.B., 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 32, 897–906.

    Article  Google Scholar 

  • Duc, D.M., 2012., Rainfall-triggered large landslides on 15 December 2005 in Van Canh District, Binh Dinh Province, Vietnam. Landslides, 10, 219–230.

    Google Scholar 

  • Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., Mashauri, D.A., 2014. Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District-Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 145–152.

    Article  Google Scholar 

  • Ercanoglu, M., Gokceoglu, C., 2002. Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental geology, 41, 720–730.

    Article  Google Scholar 

  • Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Lohmann, L.G., Loiselle, B.A., 2006. Novel methods improve prediction of species’ distribution from occurrence data. Ecography, 29, 129–151.doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.

    Article  Google Scholar 

  • Edrén, S.M., Wisz, M.S., Teilmann, J., Dietz, R., Söderkvist, J., 2010. Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography, 33, 698-708. 

    Article  Google Scholar 

  • Fernández, D.S., Lutz, M.A., 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111, 90–98.

    Article  Google Scholar 

  • Jungerius, P.D., Matundura, J., Van de Ancker, J.a.M., 2002. Road construction and gully erosion in West Pokot, Kenya. Earth Surface Processes and Landforms, 27, 1237–1247.

    Article  Google Scholar 

  • Jenness, J., 2013. DEM Surface Tools for ArcGIS. Jenness Enterprises Available at. http://www.jennessent.com/arcgis/surface:area.htm.

  • Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., Sattarian, A., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909-926.

    Article  Google Scholar 

  • Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression, Wiley Series in Probability and Statistics. Wiley.

    Google Scholar 

  • Imeson, A. C., & Kwaad, F. J. P. M., 1980. Gully types and gully prediction. Geografisch Tijdschrift, 14(5), 430-441.

    Google Scholar 

  • Govers, G., 1985. Selectivity and transport capacity of thin flows in relation to rill erosion. Catena 12(1), 35-49. doi:https://doi.org/10.1016/S0341-8162(85)80003-5.

    Article  Google Scholar 

  • Gyssels, G., Poesen, J., Nachtergaele, J., Govers, G., 2002. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones. Soil and Tillage Research, 64(3), 189–201.

    Article  Google Scholar 

  • Geissen, V., Kampichler, C., López-de Llergo-Juárez, J.J., Galindo-Acántara, A., 2007. Superficial and subterranean soil erosion in Tabasco, tropical Mexico: Development of a decision tree modeling approach. Geoderma 139(3-4), 277–287. doi:https://doi.org/10.1016/j.geoderma.2007.01.002

    Article  Google Scholar 

  • Grabs, T., Seibert, J., Bishop, K., Laudon, H., 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373, 15–23.

    Article  Google Scholar 

  • Gómez Gutiérrez, Á., Schnabel, S., Lavado Contador, J.F., 2009. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecological Modelling 220(24), 3630-3637. doi:https://doi.org/10.1016/j.ecolmodel.2009.06.020.

    Article  Google Scholar 

  • Geroy, I.J., Gribb, M.M., Marshall, H.P., Chandler, D.G., Benner, S.G., McNamara, J.P., 2011. Aspect influences on soil water retention and storage. Hydrological Processes, 25(25), 3836–3842.

    Article  Google Scholar 

  • Glenn, E., Morino, K., Nagler, P., Murray, R., Pearlstein, S., Hultine, K., 2012. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. Journal of arid environments, 79, 56-65.

    Article  Google Scholar 

  • Gómez Gutiérrez, Á., Conoscenti, C., Angileri, S.E., Rotigliano, E., Schnabel, S., 2015. Using Topographical attributes to model the spatial distribution of gullying from two Mediterranean basins: advantages and limitations. Natural Hazards. doi:https://doi.org/10.1007/s11069-015-1703-0.

    Article  Google Scholar 

  • Gallardo-Cruz, J.A., Pérez-García, E.A., Meave, J.A., 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology. 24(4), 473–482.

    Article  Google Scholar 

  • Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai D., Vacca, A., 1997. The effect of land use on runoff and soil erosion rate under Mediterranean conditions. Catena 29, 45-59. doi:https://doi.org/10.1016/S0341-8162(96)00062-8.

    Article  Google Scholar 

  • Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., Moradi, A., 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251-264.

    Google Scholar 

  • Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R., 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987.

    Article  Google Scholar 

  • Kornejady, A., Ownegh, M., Bahremand, A., 2017a. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152, 144-162.

    Article  Google Scholar 

  • Kornejady, A., Ownegh, M., Rahmati, O., Bahremand, A., 2017b. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto International, 32, 1–68

    Google Scholar 

  • Lal, R., 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation & Development, vol. 14(3), 309-322. doi:https://doi.org/10.1002/ldr.562.

    Article  Google Scholar 

  • Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y., Li, R.H., 2004. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering geology, 76, 109–128.

    Article  Google Scholar 

  • Lee, S., Ryu, J.H., Kim, I.S., 2007. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4(4), 327–338.

    Article  Google Scholar 

  • Lee, M. J., Kang, J. E., & Jeon, S., 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp, 895-898.

    Google Scholar 

  • Lucà, F., Conforti, M., Robustelli, G., 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134, 297–308.

    Article  Google Scholar 

  • Lin, Y.P., Deng, D., Lin, W.C., Lemmens, R., Crossman, N.D., Henle, K., Schmeller, D.S., 2015. Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biological conservation, 181, 102-110.

    Article  Google Scholar 

  • Lombardo, L., Cama, M., Conoscenti, C., Märker, M., & Rotigliano, E., 2015. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards, 79(3), 1621-1648.

    Google Scholar 

  • Lombardo, L., Bachofer, F., Cama, M., Märker, M., & Rotigliano, E., 2016. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy). Earth Surface Processes and Landforms, 41(12), 1776-1789.

    Google Scholar 

  • Miller, J.R., Ritter, D.F., Kochel, R.C., 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. American Journal of Science, 290, 569–599.

    Article  Google Scholar 

  • Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30.

    Article  Google Scholar 

  • Maier, H.R., Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15, 101–124

    Google Scholar 

  • Maestre, F.T., Cortina, J., 2002. Spatial patterns of surface soil properties and vegetation in a Mediterranean semiarid steppe. Plant Soil, 241(2), 279–291.

    Google Scholar 

  • Marmion, M., Hjort, J., Thuiller, W., Luoto, M., 2008. A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth surface processes and landforms, 33(14), 2241-2254.

    Article  Google Scholar 

  • Medley, K.A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global ecology and biogeography, 19(1), 122-133.

    Article  Google Scholar 

  • Magliulo, P., 2010. Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J. Maps , 6, 435–447.

    Article  Google Scholar 

  • Magliulo, P., 2012. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ. earth Sci, 67, 1801–1820. 

    Article  Google Scholar 

  • Moreno, R., Zamora, R., Molina, J.R., Vasquez, A., Herrera, M.Á., 2011. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using maximum entropy (Maxent). Ecological Informatics, 6(6), 364-370.

    Article  Google Scholar 

  • Märker, M., Pelacani, S., Schröder, B., 2011. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125(4), 530-540. doi:https://doi.org/10.1016/j.geomorph.2010.10.022

    Article  Google Scholar 

  • Meinhardt, M., Fink, M., Tunschel, H., 2015. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80–97.

    Article  Google Scholar 

  • Moghaddam, D.D., Rezaei, M., Pourghasemi, H.R., Pourtaghie, Z.S., Pradhan, B., 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913-929

    Article  Google Scholar 

  • Nagarajan, R., Roy, A., Kumar, R.V., Mukherjee, A., Khire, M.V. 2000. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment, 58(4), 275-287.

    Article  Google Scholar 

  • Nampak, H., Pradhan, B., Manap, M.A., 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300.

    Article  Google Scholar 

  • Naghibi, S.A., Pourghasemi, H.R., 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water resources management, 29(14), 5217-5236.

    Article  Google Scholar 

  • O’brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 41(5), 673-690.

    Google Scholar 

  • Ozdemir, A., 2011. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405(1-2), 123-136

    Article  Google Scholar 

  • Oh, H. J., Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.

    Google Scholar 

  • Phillips, S.J., Dudík, M., Schapire, R.E., 2004 A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83). ACM, Banff, Canada.

    Google Scholar 

  • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.

    Article  Google Scholar 

  • Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.

    Article  Google Scholar 

  • Pradhan, B., 2010. Flood susceptible mapping and risk area estimation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, 9,1–18.

    Google Scholar 

  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365.

    Google Scholar 

  • Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349-369.

    Article  Google Scholar 

  • Pourtaghi, Z.S., Pourghasemi, H.R., 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643-662.

    Article  Google Scholar 

  • Poiraud, A., 2014. Landslide susceptibility–certainty mapping by a multi-method approach: a case study in the tertiary basin of Puy-en-Velay (Massif central, France). Geomorphology, 216, 208–224.

    Article  Google Scholar 

  • Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental earth sciences, 68(5), 1443-1464

    Google Scholar 

  • Park, N.W., 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences, 73(3), 937-949.

    Article  Google Scholar 

  • Razandi, Y., Pourghasemi, H.R., Neisani, N.S., Rahmati, O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867-883.

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., Melesse, A.M., 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137, 360-372.

    Article  Google Scholar 

  • Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Feizizadeh, B., 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118-137.

    Article  Google Scholar 

  • Rahmati, O., Naghibi, S.A., Shahabi, H., Bui, D.T., Pradhan, B., Azareh, A., Melesse, A.M., 2018. Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. Journal of hydrology, 565, 248-261.

    Article  Google Scholar 

  • Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857),1285–1293.

    Article  Google Scholar 

  • Shimizu, M., 1988. Prediction of slope failures due to heavy rain using the tank model. Proceedings of the 5th International Symposium on Landslides. Lausanne, 1, pp. 771–776.

    Google Scholar 

  • Sidle, R.C., Ochiai, H., 2006. Landslides: processes, prediction, and land use. Water Research Monograph, 18. Washington, DC: American Geophysical Union; p 312.

    Google Scholar 

  • Svoray, T., Michailov, E., Cohen, A., Rokah, L., & Sturm, A., 2012. Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surface Processes and Landforms, 37(6), 607-619.

    Google Scholar 

  • Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., Wei, B., 2012. Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Computers & Geosciences, 42, 189-199.

    Google Scholar 

  • Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.

    Article  Google Scholar 

  • Shafapour Tehrany, M., Lee, MJ., Pradhan, B., Jebur, M.N, Lee, S., 2014a. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental earth sciences, 72, 4001–4015

    Article  Google Scholar 

  • Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2014b. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512:332–343

    Article  Google Scholar 

  • Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B., Parolai, S., 2015. Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bulletin of Engineering Geology and the Environment, 74(4), 1117-1136.

    Article  Google Scholar 

  • Thomalla, F., Downing, T., Spanger-Siegfried, E., Han, G., Rockström, J., 2006. Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters, 30(1), 39–48.

    Article  Google Scholar 

  • Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., Lee, S., 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences, 9(1), 79.

    Google Scholar 

  • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M.N., Tehrany, M.S., 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118,124–135.

    Article  Google Scholar 

  • Vandekerckhove, L., Poesen, J, Oostwoudwijdenes, D.J., Gyssels, G., Beuselinck, L., De Luna, E., 2000. Characteristics and controlling factors of bank gullies in two semi arid Mediterranean environments. Geomorphology, 33,37–58

    Article  Google Scholar 

  • Vandekerckhove, L., Poesen, J., Govers, G., 2003. Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena, 50 (2-4), 329-352.

    Article  Google Scholar 

  • Vanwalleghem, T., Poesen, J., Nachtergaele, J., Verstraeten, G., 2005. Characteristics, controlling factors and importance of deep gullies under cropland on loess derived soils. Geomorphology 69:76–91.

    Article  Google Scholar 

  • Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., Hosseinali, F., 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers & Geosciences. 36, 1101–1114.

    Google Scholar 

  • Yost, A. C., Petersen, S. L., Gregg, M., & Miller, R., 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecological Informatics, 3(6), 375-386

    Google Scholar 

  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72, 1–12.

    Article  Google Scholar 

  • Youssef, A.M., 2015. Landslide Susceptibility Delineation in the Ar-Rayth Area, Jizan, Kingdom of Saudi Arabia, by using analytical hierarchy process, frequency ratio, and logistic regression models. Environmental Earth Sciences, 73(12), 8499-8518

    Article  Google Scholar 

  • Zucca, C., Canu, A., Della Peruta, R., 2006. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena, 68(2), 87–95.

    Article  Google Scholar 

  • Zipkin, E.F., Grant, E.H.C., Fagan, W.F., 2012. Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications, 22(7), 1962-1972.

    Article  Google Scholar 

  • Zakerinejad, R., Märker, M., 2014. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geogr Fis Din Quat, 37(1), 67-76.

    Google Scholar 

  • Zhu, A.X., Wang, R.X., Qiao, J.P., Qin, C.Z., Chen, Y.B., Liu, J., Du, F., Lin, Y., Zhu, T.X., 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214, 128–138.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Regional Water Authority of Golestan province, and the authors would like to thank them for providing the discharge and meteorological data and the Forests, Ranges and Catchment Management Organization (FRWO) of Golestan for providing the data and maps.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javidan, N., Kavian, A., Pourghasemi, H.R., Conoscenti, C., Jafarian, Z. (2020). Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran. In: Shit, P., Pourghasemi, H., Bhunia, G. (eds) Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_29

Download citation

Publish with us

Policies and ethics