Skip to main content

Murine Models of Familial Cytokine Storm Syndromes

  • Chapter
  • First Online:
Book cover Cytokine Storm Syndrome

Abstract

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (i.e., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake, J. A., Eppig, J. T., Kadin, J. A., Richardson, J. E., Smith, C. L., Bult, C. J., et al. (2017). Mouse Genome Database (MGD)-2017: Community knowledge resource for the laboratory mouse. Nucleic Acids Research, 45, D723–D729.

    Article  CAS  PubMed  Google Scholar 

  2. Abolins, S., King, E. C., Lazarou, L., Weldon, L., Hughes, L., Drescher, P., et al. (2017). The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nature Communications, 8, 14811.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Castrop, H. (2010). Genetically modified mice-successes and failures of a widely used technology. Pflugers Archiv, 459, 557–567.

    Article  CAS  PubMed  Google Scholar 

  4. Justice, M. J., Siracusa, L. D., & Stewart, A. F. (2011). Technical approaches for mouse models of human disease. Disease Models & Mechanisms, 4, 305–310.

    Article  CAS  Google Scholar 

  5. Gierut, J. J., Jacks, T. E., & Haigis, K. M. (2014). Strategies to achieve conditional gene mutation in mice. Cold Spring Harbor Protocols, 2014, 339–349.

    PubMed  PubMed Central  Google Scholar 

  6. Perlman, R. L. (2016). Mouse models of human disease: An evolutionary perspective. Evolution, Medicine and Public Health, 2016(1), 170–176.

    Google Scholar 

  7. Henter, J.-I., Horne, A., Aricó, M., Egeler, R. M., Filipovich, A. H., Imashuku, S., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric Blood & Cancer, 48, 124–131.

    Article  Google Scholar 

  8. Doran, A. G., Wong, K., Flint, J., Adams, D. J., Hunter, K. W., & Keane, T. M. (2016). Deep genome sequencing and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private variation and homozygous truncating mutations. Genome Biology, 17, 167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sellers, R. S., Clifford, C. B., Treuting, P. M., & Brayton, C. (2012). Immunological variation between inbred laboratory mouse strains. Veterinary Pathology, 49, 32–43.

    Article  CAS  PubMed  Google Scholar 

  10. Eppig, J. T., Motenko, H., Richardson, J. E., Richards-Smith, B., & Smith, C. L. (2015). The International Mouse Strain Resource (IMSR): Cataloging worldwide mouse and ES cell line resources. Mammalian Genome, 26, 448–455.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brisse, E., Wouters, C. H., & Matthys, P. (2015). Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine & Growth Factor Reviews, 26, 263–280.

    Article  CAS  Google Scholar 

  12. Kägi, D., Ledermann, B., Bürki, K., Seiler, P., Odermatt, B., Olsen, K. J., et al. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature, 369, 31–37.

    Article  PubMed  Google Scholar 

  13. Walsh, C. M., Matloubian, M., Liu, C. C., Ueda, R., Kurahara, C. G., Christensen, J. L., et al. (1994). Immune function in mice lacking the perforin gene. Proceedings of the National Academy of Sciences of the United States of America, 91, 10854–10858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stepp, S. E., Dufourcq-Lagelouse, R., Le Deist, F., Bhawan, S., Certain, S., Mathew, P. A., et al. (1999). Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science, 286(5446), 1957–1959. https://www.ncbi.nlm.nih.gov/pubmed/10583959

  15. Jordan, M. B. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  16. Badovinac, V. P., Hamilton, S. E., & Harty, J. T. (2003). Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity, 18, 463–474.

    Article  CAS  PubMed  Google Scholar 

  17. Lowin, B., Beermann, F., Schmidt, A., & Tschopp, J. (1994). A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proceedings of National Academy of Sciences of United States of America, 91, 11571–11575.

    Article  CAS  Google Scholar 

  18. Lowin, B., Hahne, M., Mattmann, C., & Tschopp, J. (1994). Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature, 370, 650–652.

    Article  CAS  PubMed  Google Scholar 

  19. Spielman, J., Lee, R. K., & Podack, E. R. (1998). Perforin/Fas-ligand double deficiency is associated with macrophage expansion and severe pancreatitis. Journal of Immunology, 161, 7063–7070.

    CAS  Google Scholar 

  20. van den Broek, M. E., Kägi, D., Ossendorp, F., Toes, R., Vamvakas, S., Lutz, W. K., et al. (1996). Decreased tumor surveillance in perforin-deficient mice. The Journal of Experimental Medicine, 184, 1781–1790.

    Article  PubMed  Google Scholar 

  21. Kägi, D., Odermatt, B., Seiler, P., Zinkernagel, R. M., Mak, T. W., & Hengartner, H. (1997). Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. The Journal of Experimental Medicine, 186, 989–997.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Müllbacher, A., Hla, R. T., Museteanu, C., & Simon, M. M. (1999). Perforin is essential for control of ectromelia virus but not related poxviruses in mice. Journal of Virology, 73, 1665–1667.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang, E., Galle, L., Maggs, D., Estes, D. M., & Mitchell, W. J. (2000). Pathogenesis of Herpes simplex virus type 1-induced corneal inflammation in perforin-deficient mice. Journal of Virology, 74, 11832–11840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Dommelen, S. L. H., Sumaria, N., Schreiber, R. D., Scalzo, A. A., Smyth, M. J., & Degli-Esposti, M. A. (2006). Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity, 25, 835–848.

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt, N. W., Khanolkar, A., Hancox, L., Heusel, J. W., & Harty, J. T. (2012). Perforin plays an unexpected role in regulating T-cell contraction during prolonged Listeria monocytogenes infection. European Journal of Immunology, 42, 629–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta, M., Greer, P., Mahanty, S., Shieh, W.-J., Zaki, S. R., Ahmed, R., et al. (2005). CD8-mediated protection against Ebola virus infection is perforin dependent. Journal of Immunology, 174, 4198–4202.

    Article  CAS  Google Scholar 

  27. Wirtz, T., Weber, T., Kracker, S., Sommermann, T., Rajewsky, K., & Yasuda, T. (2016). Mouse model for acute Epstein-Barr virus infection. Proceedings of the National Academy of Sciences of the United States of America, 113, 201616574.

    Google Scholar 

  28. Badovinac, V. P. (2000). Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science, 290, 1354–1357.

    Article  CAS  PubMed  Google Scholar 

  29. Pham, N. L. L., Badovinac, V. P., & Harty, J. T. (2012). Epitope specificity of memory CD8+ T cells dictates vaccination-induced mortality in LCMV-infected perforin-deficient mice. European Journal of Immunology, 42, 1488–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, J., Huck, S. P., McHugh, R. S., Hermans, I. F., & Ronchese, F. (2006). Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 147–152.

    Article  CAS  PubMed  Google Scholar 

  31. Terrell, C. E., & Jordan, M. B. (2013). Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood, 121, 5184–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jordan, M. B., Hildeman, D., Kappler, J., & Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 104, 735–743.

    Article  CAS  PubMed  Google Scholar 

  33. Terrell, C. E., & Jordan, M. B. (2013). Mixed hematopoietic or T-cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood, 122, 2618–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waggoner, S. N., Taniguchi, R. T., Mathew, P. A., Kumar, V., & Welsh, R. M. (2010). Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. The Journal of Clinical Investigation, 120, 1925–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lang, P. A., Lang, K. S., Xu, H. C., Grusdat, M., Parish, I. A., Recher, M., et al. (2012). Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proceedings of the National Academy of Sciences o the United States of America, 109, 1210–1215.

    Article  CAS  Google Scholar 

  36. Ge, M. Q., Ho, A. W., Tang, Y., Wong, K. H. S., Chua, B. Y. L., Gasser, S., et al. (2012). NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. Journal of Immunology, 189, 2099–2109.

    Article  CAS  Google Scholar 

  37. Zangi, L., Klionsky, Y. Z., Yarimi, L., Bachar-Lustig, E., Eidelstein, Y., Shezen, E., et al. (2012). Deletion of cognate CD8 T cells by immature dendritic cells: A novel role for perforin, granzyme A, TREM-1, and TLR7. Blood, 120, 1647–1657.

    Article  CAS  PubMed  Google Scholar 

  38. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A. J., Garrigue, A., Kurowska, M., Menasche, G., et al. (2015). A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125, 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  39. Waggoner, S. N., & Kumar, V. (2012). Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Frontiers in Immunology, 3, 377.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Madera, S., Rapp, M., Firth, M. A., Beilke, J. N., Lanier, L. L., & Sun, J. C. (2016). Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. Journal of Experimental Medicine. https://doi.org/10.1084/jem.20150712

  41. Crouse, J., Bedenikovic, G., Wiesel, M., Ibberson, M., Xenarios, I., VonLaer, D., et al. (2014). Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity, 40, 961–973.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, H. C., Grusdat, M., Pandyra, A. A., Polz, R., Huang, J., Sharma, P., et al. (2014). Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity, 40, 949–960.

    Article  CAS  PubMed  Google Scholar 

  43. Jenkins, M. R., Rudd-Schmidt, J. A., Lopez, J. A., Ramsbottom, K. M., Mannering, S. I., Andrews, D. M., et al. (2015). Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. The Journal of Experimental Medicine, 212, 307–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Binder, D., van den Broek, M. F., Kägi, D., Bluethmann, H., Fehr, J., Hengartner, H., et al. (1998). Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. The Journal of Experimental Medicine, 187, 1903–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pachlopnik-Schmid, J., Ho, C.-H., Chrétien, F., Lefebvre, J. M., Pivert, G., Kosco-Vilbois, M., et al. (2009). Neutralization of IFNγ defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Molecular Medicine, 1, 112–124.

    Article  PubMed  CAS  Google Scholar 

  46. Rood, J. E., Rao, S., Paessler, M., Kreiger, P. A., Chu, N., Stelekati, E., et al. (2016). ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood, 127, 426–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humblet-Baron, S., Franckaert, D., Dooley, J., Bornschein, S., Cauwe, B., Schönefeldt, S., et al. (2016). IL-2 consumption by highly activated CD8 T cells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. The Journal of Allergy and Clinical Immunology, 138, 200–209.e8.

    Article  CAS  PubMed  Google Scholar 

  48. Das, R., Guan, P., Sprague, L., Verbist, K., Tedrick, P., An, Q. A., et al. (2016). Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 127, 1666–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maschalidi, S., Sepulveda, F. E., Garrigue, A., Fischer, A., & de Saint Basile, G. (2016). Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood, 128, 60–71.

    Article  CAS  PubMed  Google Scholar 

  50. Crozat, K., Georgel, P., Rutschmann, S., Mann, N., Du, X., Hoebe, K., et al. (2006). Analysis of the MCMV resistome by ENU mutagenesis. Mammalian Genome, 17, 398–406.

    Article  CAS  PubMed  Google Scholar 

  51. Crozat, K., Hoebe, K., Ugolini, S., Hong, N. A., Janssen, E., Rutschmann, S., et al. (2007). Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: A mouse model of type 3 familial hemophagocytic lymphohistiocytosis. The Journal of Experimental Medicine, 204, 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krebs, P., Crozat, K., Popkin, D., Oldstone, M. B., & Beutler, B. (2011). Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood, 117, 6582–6588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Monfregola, J., Johnson, J. L., Meijler, M. M., Napolitano, G., & Catz, S. D. (2012). MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils. The Journal of Biological Chemistry, 287, 44603–44618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He, J., Johnson, J. L., Monfregola, J., Ramadass, M., Pestonjamasp, K., Napolitano, G., et al. (2016). Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Molecular Biology of the Cell, 27, 572–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson, J. L., He, J., Ramadass, M., Pestonjamasp, K., Kiosses, W. B., Zhang, J., et al. (2016). Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane. The Journal of Biological Chemistry, 291, 3423–3438.

    Article  CAS  PubMed  Google Scholar 

  56. Chicka, M. C., Ren, Q., Richards, D., Hellman, L. M., Zhang, J., Fried, M. G., et al. (2016). Role of Munc13-4 as a Ca2+-dependent tether during platelet secretion. The Biochemical Journal, 473, 627–639.

    Article  CAS  PubMed  Google Scholar 

  57. D’Orlando, O., Zhao, F., Kasper, B., Orinska, Z., Müller, J., Hermans-Borgmeyer, I., et al. (2013). Syntaxin 11 is required for NK and CD8+ T-cell cytotoxicity and neutrophil degranulation. European Journal of Immunology, 43, 194–208.

    Article  PubMed  CAS  Google Scholar 

  58. Kogl, T., Muller, J., Jessen, B., Schmitt-Graeff, A., Janka, G., Ehl, S., et al. (2013). Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood, 121, 604–613.

    Article  CAS  PubMed  Google Scholar 

  59. Sepulveda, F. E., Debeurme, F., Ménasché, G., Kurowska, M., Côte, M., Schmid, J. P., et al. (2013). Distinct severity of HLH in both human and murine mutants with complete loss of cytotoxic effector PRF1, RAB27A, and STX11. Blood, 121, 595–603.

    Article  CAS  PubMed  Google Scholar 

  60. Prekeris, R., Klumperman, J., & Scheller, R. H. (2000). Syntaxin 11 is an atypical SNARE abundant in the immune system. European Journal of Cell Biology, 79, 771–780.

    Article  CAS  PubMed  Google Scholar 

  61. Ye, S., Karim, Z. A., Al Hawas, R., Pessin, J. E., Filipovich, A. H., & Whiteheart, S. W. (2012). Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood, 120, 2484–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, S., Ma, D., Wang, X., Celkan, T., Nordenskjöld, M., Henter, J. I., et al. (2008). Syntaxin-11 is expressed in primary human monocytes/macrophages and acts as a negative regulator of macrophage engulfment of apoptotic cells and IgG-opsonized target cells. British Journal of Haematology, 142, 469–479.

    Article  CAS  PubMed  Google Scholar 

  63. Kim, K., Petrova, Y. M., Scott, B. L., Nigam, R., Agrawal, A., Evans, C. M., et al. (2012). Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells. The Biochemical Journal, 446, 383–394.

    Article  CAS  PubMed  Google Scholar 

  64. Spessott, W. A., Sanmillan, M. L., McCormick, M. E., Patel, N., Villanueva, J., Zhang, K., et al. (2015). Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood, 125, 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silvers, W. K. (1979). The coat colors of mice. New York: Springer.

    Book  Google Scholar 

  66. Wilson, S. M., Yip, R., Swing, D. A., O’Sullivan, T. N., Zhang, Y., Novak, E. K., et al. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 7933–7938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stinchcombe, J. C., Barral, D. C., Mules, E. H., Booth, S., Hume, A. N., Machesky, L. M., et al. (2001). Rab27a is required for regulating secretion in cytotoxic T lymphocytes. The Journal of Cell Biology, 152, 825–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Novak, E. K., Gautam, R., Reddington, M., Collinson, L. M., Copeland, N. G., Jenkins, N. A., et al. (2002). The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood, 100, 128–135.

    Article  CAS  PubMed  Google Scholar 

  69. Pachlopnik Schmid, J., Ho, C.-H., Diana, J., Pivert, G., Lehuen, A., Geissmann, F., et al. (2008). A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). European Journal of Immunology, 38, 3219–3225.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson, J. L., Hong, H., Monfregola, J., & Catz, S. D. (2011). Increased survival and reduced neutrophil infiltration of the liver in rab27a- but not munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infection and Immunity, 79, 3607–3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bennett, J. M., Blume, R. S., & Wolff, S. M. (1969). Characterization and significance of abnormal leukocyte granules in the beige mouse: A possible homologue for Chediak-Higashi Aleutian trait. Translational Research, 73, 235–243.

    CAS  Google Scholar 

  72. Oliver, C., & Essner, E. (1975). Formation of anomalous lysosomes in monocytes, neutrophils, and eosinophils from bone marrow of mice with Chédiak-Higashi syndrome. Laboratory Investigation, 32, 17–27.

    CAS  PubMed  Google Scholar 

  73. Orn, A., Håkansson, E. M., Gidlund, M., Ramstedt, U., Axberg, I., Wigzell, H., et al. (1982). Pigment mutations in the mouse which also affect lysosomal functions lead to suppressed natural killer cell activity. Scandinavian Journal of Immunology, 15, 305–310.

    Article  CAS  PubMed  Google Scholar 

  74. Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278, 451–453.

    Article  CAS  PubMed  Google Scholar 

  75. Kärre, K., Klein, G. O., Kiessling, R., Klein, G., & Roder, J. C. (1980). Low natural in vivo resistance to syngeneic leukaemias in natural killer-deficient mice. Nature, 284, 624–626.

    Article  PubMed  Google Scholar 

  76. Barbosa, M. D. F. S., Nguyen, Q. A., Tchernev, V. T., Ashley, J. A., Detter, J. C., Blaydes, S. M., et al. (1996). Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature, 382, 262–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGarry, M. P., Reddington, M., Novak, E. K., & Swank, R. T. (1999). Survival and lung pathology of mouse models of Hermansky-Pudlak syndrome and Chediak-Higashi syndrome. Proceedings of the Society for Experimental Biology and Medicine, 220, 162–168.

    Article  CAS  PubMed  Google Scholar 

  78. Jessen, B., Maul-Pavicic, A., Ufheil, H., Vraetz, T., Enders, A., Lehmberg, K., et al. (2011). Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood, 118, 4620–4629.

    Article  CAS  PubMed  Google Scholar 

  79. Chatterjee, P., Tiwari, R. K., Rath, S., Bal, V., & George, A. (2012). Modulation of antigen presentation and B cell receptor signaling in B cells of beige mice. Journal of Immunology, 188, 2695–2702.

    Article  CAS  Google Scholar 

  80. Westphal, A., Cheng, W., Yu, J., Grassl, G., Krautkrämer, M., Holst, O., et al. (2016). Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor–mediated inflammatory responses. Journal of Experimental Medicine, 214, 227.

    Article  PubMed  CAS  Google Scholar 

  81. Balkema, G. W., Mangini, N. J., & Pinto, L. H. (1983). Discrete visual defects in pearl mutant mice. Science, 219, 1085–1087.

    Article  CAS  PubMed  Google Scholar 

  82. Novak, E. K., Hui, S. W., & Swank, R. T. (1984). Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood, 63, 536–544.

    Article  CAS  PubMed  Google Scholar 

  83. Zhen, L., Jiang, S., Feng, L., Bright, N. A., Peden, A. A., Seymour, A. B., et al. (1999). Abnormal expression and subcellular distribution of subunit proteins of the AP-3 adaptor complex lead to platelet storage pool deficiency in the pearl mouse. Blood, 94, 146–155.

    Article  CAS  PubMed  Google Scholar 

  84. Feng, L., Seymour, A. B., Jiang, S., To, A., Peden, A. A., Novak, E. K., et al. (1999). The β3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Human Molecular Genetics, 8, 323–330.

    Article  CAS  PubMed  Google Scholar 

  85. Feng, L., Rigatti, B. W., Novak, E. K., Gorin, M. B., & Swank, R. T. (2000). Genomic structure of the mouse Ap3b1 gene in normal and pearl mice. Genomics, 69, 370–379.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, W., Li, C., Ward, D. M., Kaplan, J., & Mansour, S. L. (2000). Defective organellar membrane protein trafficking in Ap3b1-deficient cells. Journal of Cell Science, 113(Pt 2), 4077–4086.

    CAS  PubMed  Google Scholar 

  87. Swank, R. T., Novak, E. K., McGarry, M. P., Zhang, Y., Li, W., Zhang, Q., et al. (2000). Abnormal vesicular trafficking in mouse models of Hermansky-Pudlak syndrome. Pigment Cell Research, 13(Suppl 8), 59–67.

    Article  PubMed  Google Scholar 

  88. Cernadas, M., Sugita, M., van der Wel, N., Cao, X., Gumperz, J. E., Maltsev, S., et al. (2003). Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. Journal of Immunology, 171, 4149–4155.

    Article  CAS  Google Scholar 

  89. Young, L. R., Borchers, M. T., Allen, H. L., Gibbons, R. S., & McCormack, F. X. (2006). Lung-restricted macrophage activation in the pearl mouse model of Hermansky-Pudlak syndrome. Journal of Immunology, 176, 4361–4368.

    Article  CAS  Google Scholar 

  90. Meng, R., Wu, J., Harper, D. C., Wang, Y., Kowalska, M. A., Abrams, C. S., et al. (2015). Defective release of α granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood, 125, 1623–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jessen, B., Bode, S. F. N., Ammann, S., Chakravorty, S., Davies, G., Diestelhorst, J., et al. (2013). The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood, 121, 2943–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Czar, M. J., Kersh, E. N., Mijares, L. A., Lanier, G., Lewis, J., Yap, G., et al. (2001). Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proceedings of the National Academy of Sciences of the United States of America, 98, 7449–7454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, C., Nguyen, K. B., Pien, G. C., Wang, N., Gullo, C., Howie, D., et al. (2001). SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nature Immunology, 2, 410–414.

    Article  CAS  PubMed  Google Scholar 

  94. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L., & Ahmed, R. (2003). SAP is required for generating long-term humoral immunity. Nature, 421, 282–287.

    Article  CAS  PubMed  Google Scholar 

  95. Chan, B., Lanyi, A., Song, H. K., Griesbach, J., Simarro-Grande, M., Poy, F., et al. (2003). SAP couples Fyn to SLAM immune receptors. Nature Cell Biology, 5, 155–160.

    Article  CAS  PubMed  Google Scholar 

  96. Latour, S., Roncagalli, R., Chen, R., Bakinowski, M., Shi, X., Schwartzberg, P. L., et al. (2003). Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nature Cell Biology, 5, 149–154.

    Article  CAS  PubMed  Google Scholar 

  97. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L., & Germain, R. N. (2008). SAP-controlled T-B cell interactions underlie germinal centre formation. Nature, 455, 764–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Veillette, A., Zhang, S., Shi, X., Dong, Z., Davidson, D., & Zhong, M.-C. (2008). SAP expression in T cells, not in B cells, is required for humoral immunity. Proceedings of the National Academy of Sciences of the United States of America, 105, 1273–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nichols, K. E., Hom, J., Gong, S.-Y., Ganguly, A., Ma, C. S., Cannons, J. L., et al. (2005). Regulation of NKT cell development by SAP, the protein defective in XLP. Nature Medicine, 11, 340–345.

    Article  CAS  PubMed  Google Scholar 

  100. Pasquier, B., Yin, L., Fondanèche, M.-C., Relouzat, F., Bloch-Queyrat, C., Lambert, N., et al. (2005). Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. The Journal of Experimental Medicine, 201, 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Das, R., Bassiri, H., Guan, P., Wiener, S., Banerjee, P. P., Zhong, M.-C., et al. (2013). The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood, 121, 3386–3395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yin, L., Al-Alem, U., Liang, J., Tong, W.-M., Li, C., Badiali, M., et al. (2003). Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. Journal of Medical Virology, 71, 446–455.

    Article  CAS  PubMed  Google Scholar 

  103. Crotty, S., McCausland, M. M., Aubert, R. D., Wherry, E. J., & Ahmed, R. (2006). Hypogammaglobulinemia and exacerbated CD8 T-cell-mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood, 108, 3085–3093.

    Article  CAS  PubMed  Google Scholar 

  104. Dong, Z., Davidson, D., Pérez-Quintero, L. A., Kurosaki, T., Swat, W., & Veillette, A. (2012). The adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target cells. Immunity, 36, 974–985.

    Article  CAS  PubMed  Google Scholar 

  105. Rivat, C., Booth, C., Alonso-ferrero, M., Blundell, M., Sebire, N. J., Adrian, J., et al. (2013). Murine model of X-linked lymphoproliferative disease. Brief report SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease. Blood, 121, 1073–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruffo, E., Malacarne, V., Larsen, S. E., Das, R., Patrussi, L., Wülfing, C., et al. (2016). Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1. Science Translational Medicine, 8, 321ra7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Harlin, H., Harlin, H., Reffey, S. B., Reffey, S. B., Duckett, C. S., Duckett, C. S., et al. (2001). Characterization of XIAP-de cient mice. Molecular and Cellular Biology, 21, 3604–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Olayioye, M. A., Kaufmann, H., Pakusch, M., Vaux, D. L., Lindeman, G. J., & Visvader, J. E. (2005). XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death and Differentiation, 12, 87–90.

    Article  CAS  PubMed  Google Scholar 

  109. Bauler, L. D., Duckett, C. S., & O’Riordan, M. X. D. (2008). XIAP regulates cytosol-specific innate immunity to listeria infection. PLoS Pathogens, 4, e1000142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rumble, J. M., Bertrand, M. J., Csomos, R. A., Wright, C. W., Albert, L., Mak, T. W., et al. (2008). Apoptotic sensitivity of murine IAP-deficient cells. The Biochemical Journal, 415, 21–25.

    Article  CAS  PubMed  Google Scholar 

  111. Schile, A. J., García-Fernández, M., & Steller, H. (2008). Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes & Development, 22, 2256–2266.

    Article  CAS  Google Scholar 

  112. Jost, P. J., Grabow, S., Gray, D., McKenzie, M. D., Nachbur, U., Huang, D. C. S., et al. (2009). XIAP discriminates between type I and type II FAS-induced apoptosis. Nature, 460, 1035–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prakash, H., Albrecht, M., Becker, D., Kuhlmann, T., & Rudel, T. (2010). Deficiency of XIAP leads to sensitization for Chlamydophila pneumoniae pulmonary infection and dysregulation of innate immune response in mice. The Journal of Biological Chemistry, 285, 20291–20302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fuchs, Y., Brown, S., Gorenc, T., Rodriguez, J., Fuchs, E., & Steller, H. (2013). Sept4/ARTS regulates stem cell apoptosis and skin regeneration. Science, 341, 286–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Unsain, N., Higgins, J. M., Parker, K. N., Johnstone, A. D., & Barker, P. A. (2013). XIAP regulates caspase activity in degenerating axons. Cell Reports, 4, 751–763.

    Article  CAS  PubMed  Google Scholar 

  116. Yabal, M., Müller, N., Adler, H., Knies, N., Groß, C. J., Damgaard, R., et al. (2014). XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Reports, 7, 1796–1808.

    Article  CAS  PubMed  Google Scholar 

  117. Andree, M., Seeger, J. M., Schüll, S., Coutelle, O., Wagner-Stippich, D., Wiegmann, K., et al. (2014). BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. The EMBO Journal, 33, 2171–2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hsieh, W.-C., Chuang, Y.-T., Chiang, I., Hsu, S.-C., Miaw, S.-C., & Lai, M.-Z. (2014). Inability to resolve specific infection generates innate immunodeficiency syndrome in Xiap−/− mice. Blood, 124, 2847–2857.

    Article  CAS  PubMed  Google Scholar 

  119. Gentle, I. E., Moelter, I., Lechler, N., Bambach, S., Vucikuja, S., Häcker, G., et al. (2013). Inhibitor of apoptosis proteins (IAPs) are required for effective T cell expansion/survival during anti-viral immunity in mice. Blood, 123, 659–669.

    Article  PubMed  CAS  Google Scholar 

  120. Ebert, G., Preston, S., Allison, C., Cooney, J., Toe, J. G., Stutz, M. D., et al. (2015). Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America, 112, 5797–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gibon, J., Unsain, N., Gamache, K., Thomas, R. A., De Leon, A., Johnstone, A., et al. (2016). The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. The FASEB Journal, 30, 1–8.

    Article  CAS  Google Scholar 

  122. Chen, M., Felix, K., & Wang, J. (2012). Critical role for perforin and Fas-dependent killing of dendritic cells in the control of inflammation. Blood, 119, 127–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nansen, A., Jensen, T., Christensen, J. P., Andreasen, S. O., Röpke, C., Marker, O., et al. (1999). Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. Journal of Immunology, 163, 6114–6122.

    CAS  Google Scholar 

  124. Sepulveda, F. E., Maschalidi, S., Vosshenrich, C. A. J., Garrigue, A., Kurowska, M., Ménasche, G., et al. (2015). A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood, 125, 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  125. Lykens, J. E., Terrell, C. E., Zoller, E. E., Risma, K., & Jordan, M. B. (2011). Perforin is a critical physiologic regulator of T-cell activation. Blood, 118, 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sepulveda, F. E., Garrigue, A., Maschalidi, S., Garfa-Traore, M., Ménasché, G., Fischer, A., et al. (2016). Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood, 127, 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  127. Jessen, B., Kögl, T., Sepulveda, F. E., de Saint Basile, G., Aichele, P., & Ehl, S. (2013). Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Frontiers in Immunology, 4, 34–36.

    Article  CAS  Google Scholar 

  128. Singh, R. K., Mizuno, K., Wasmeier, C., Wavre-Shapton, S. T., Recchi, C., Catz, S. D., et al. (2013). Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion. The FEBS Journal, 280, 892–903.

    Article  CAS  PubMed  Google Scholar 

  129. Chiossone, L., Audonnet, S., Chetaille, B., Chasson, L., Farnarier, C., Berda-Haddad, Y., et al. (2012). Protection from inflammatory organ damage in a murine model of hemophagocytic lymphohistiocytosis using treatment with IL-18 binding protein. Frontiers in Immunology, 3, 1–10.

    Article  Google Scholar 

  130. Johnson, T. S., Terrell, C. E., Millen, S. H., Katz, J. D., Hildeman, D. A., & Jordan, M. B. (2014). Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. Journal of Immunology, 192, 84–91.

    Article  CAS  Google Scholar 

  131. Booth, C., Carmo, M., & Gaspar, H. B. (2014). Gene therapy for haemophagocytic lymphohistiocytosis. Current Gene Therapy, 14, 437–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Pachlopnik Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volkmer, B., Aichele, P., Pachlopnik Schmid, J. (2019). Murine Models of Familial Cytokine Storm Syndromes. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_28

Download citation

Publish with us

Policies and ethics