Skip to main content

Acute Myocarditis and Cardiomyopathies

  • Chapter
  • First Online:
  • 1452 Accesses

Abstract

The definition and classification of cardiomyopathies were recently revised by an expert panel of the American Heart Association (Maron et al., Circulation 113:1807–1816, 2006) following the initial classification by the World Health Organization in 1995 (Richardson et al., Circulation 93:841–842, 1996). Cardiomyopathies are considered “a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular hypertrophy or dilatation and are due to a variety of causes that frequently are genetic” (Maron et al., Circulation 113:1807–1816, 2006). Cardiomyopathies are generally considered as primary (disease solely or predominantly confined to heart muscle) or secondary, showing pathological myocardial involvement secondary to a systemic or multiorgan disease process. Both forms are commonly seen in children, although primary forms predominate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–1816.

    Article  PubMed  Google Scholar 

  2. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93:841–842.

    Article  CAS  PubMed  Google Scholar 

  3. Canter CE, Naftel DC. Recipient characteristics. In: Fine RN, Webber SA, Olthoff KM, Kelly DA, Harmon WE, eds. Pediatric Solid Organ Transplantation. Malden, MA: Blackwell Publishing, Ltd.; 2007:259–264.

    Chapter  Google Scholar 

  4. Blume ED, Naftel DC, Bastardi HJ, et al. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113:2313–2319.

    Article  PubMed  Google Scholar 

  5. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348:1647–1655.

    Article  PubMed  Google Scholar 

  6. Nugent AW, Daubeney PEF, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348:1639–1646.

    Article  PubMed  Google Scholar 

  7. Rasten-Almqvist P, Eksborg S, Rajs J. Heart weight in infants – a comparison between sudden infant death syndrome and other causes of death. Acta Paediatr. 2000;89:1062–1067.

    Article  CAS  PubMed  Google Scholar 

  8. Martino TA, Liu P, Sole MJ. Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res. 1994;74:182–188.

    Article  CAS  PubMed  Google Scholar 

  9. Fujioka S, Kitaura Y, Ukimura A, et al. Evaluation of viral infection in the myocardium of patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2000;36:1920–1926.

    Article  CAS  PubMed  Google Scholar 

  10. Fujioka S, Kitaura Y, Deguchi H, et al. Evidence of viral infection in the myocardium of American and Japanese patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2004;94:602–605.

    Article  PubMed  Google Scholar 

  11. Martin AB, Webber S, Fricker FJ, et al. Acute myocarditis. Rapid diagnosis by PCR in children. Circulation. 1994;90:330–339.

    Article  CAS  PubMed  Google Scholar 

  12. Towbin JA, Bowles KR, Bowles NE. Etiologies of cardiomyopathy and heart failure. Nat Med. 1999;5:266–267.

    Article  CAS  PubMed  Google Scholar 

  13. Menon SC, Olson TM, Michels VV. Genetics of familial dilated cardiomyopathy. Prog Pediatr Cardiol. 2008;25:57–67.

    Article  Google Scholar 

  14. Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003;80:207–215.

    Article  CAS  PubMed  Google Scholar 

  15. Cox GF. Diagnostic approaches to pediatric cardiomyopathy of metabolic genetic etiologies and their relation to therapy. Prog Pediatr Cardiol. 2007;24:15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pophal SG, Sigfusson G, Booth KL, et al. Complications of endomyocardial biopsy in children. J Am Coll Cardiol. 1999;34:2105–2110.

    Article  CAS  PubMed  Google Scholar 

  17. Aretz HT, Billingham ME, Edwards WD, et al. Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol. 1987;1:3–14.

    CAS  PubMed  Google Scholar 

  18. Kishnani PS, BurnsWechsler S, Li JS. Enzyme-deficiency metabolic cardiomyopathies and the role of enzyme replacement therapy. Prog Pediatr Cardiol. 2007;23:39–48.

    Article  Google Scholar 

  19. Hill KD, Hamid R, Exil VJ. Pediatric cardiomyopathies related to fatty acid metabolism. Prog Pediatr Cardiol. 2008;25:69–78.

    Article  Google Scholar 

  20. Feingold B, Law YM. Nesiritide use in pediatric patients with congestive heart failure. J Heart Lung Transplant. 2004;23:1455–1459.

    Article  PubMed  Google Scholar 

  21. Simsic JM, Scheurer M, Tobias JD, et al. Perioperative effects and safety of nesiritide following cardiac surgery in children. J Intensive Care Med. 2006;21:22–26.

    Article  PubMed  Google Scholar 

  22. Shaddy RE, Boucek MM, Hsu DT, et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298:1171–1179.

    Article  Google Scholar 

  23. English RF, Janosky JE, Ettedgui JA, Webber SA. Outcomes for children with acute myocarditis. Cardiol Young. 2004;14:488–493.

    Article  Google Scholar 

  24. Rhee EK, Canter CE, Basile S, Webber SA, Naftel DC. Sudden death prior to pediatric heart transplantation: would implantable defibrillators improve outcome? J Heart Lung Transplant. 2007;26:447–452.

    Article  PubMed  Google Scholar 

  25. Korte T, Koditz H, Niehaus M, Paul T, Tebbenjohanns J. High incidence of appropriate and inappropriate ICD therapies in children and adolescents with implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 2004;27:924–932.

    Article  PubMed  Google Scholar 

  26. Daubeney PEF, Nugent AW, Chondros P, et al. Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation. 2006;114:2671–2678.

    Article  PubMed  Google Scholar 

  27. Weintraub RG, Nugent AW, Daubeney PEF. Pediatric cardiomyopathy: the Australian experience. Prog Pediatr Cardiol. 2007;23:17–24.

    Article  Google Scholar 

  28. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–1876.

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE. The pediatric cardiomyopathy registry: 1995–2007. Prog Pediatr Cardiol. 2008;25:31–36.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andrews RE, Fenton MJ, Ridout DA, Burch M, British Congenital Cardiac Association. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation. 2008;117:79–84.

    Article  PubMed  Google Scholar 

  31. Alvarez JA, Wilkinson JD, Lipshultz SE. Outcome predictors for pediatric dilated cardiomyopathy: a systematic review. Prog Pediatr Cardiol. 2007;23:25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maron BJ. Hypertrophic cardiomyopathy in childhood. Pediatr Clin N Am. 2004;51:1305–1346.

    Article  Google Scholar 

  33. Kubo T, Gimeno JR, Bahl A, et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol. 2007;49:2419–2426.

    Article  CAS  PubMed  Google Scholar 

  34. Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111:209–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350:127–133.

    Article  CAS  PubMed  Google Scholar 

  36. Dipchand AI, Naftel DC, Feingold B, et al. Outcomes of children with cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transplant. 2009; https://doi.org/10.1016/j.healun.2009.05.019.

  37. Yano M, Kohno M, Ohkusa T, et al. Effect of milrinone on left ventricular relaxation and Ca(2+) uptake function of cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol. 2000;279:H1898–H1905.

    Article  CAS  PubMed  Google Scholar 

  38. Berul CI, Van Hare GF, Kertesz NJ, et al. Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol. 2008;51:1685–1691.

    Article  PubMed  Google Scholar 

  39. Towbin JA. Pediatric myocardial disease. Pediatr Clin N Am. 1999;46:289–312.

    Article  CAS  Google Scholar 

  40. Maron BJ, Spirito P. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol. 1998;81:1339–1344.

    Article  CAS  PubMed  Google Scholar 

  41. Nugent AW, Daubeney PEF, Chondros P, et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation. 2005;112:1332–1338.

    Article  PubMed  Google Scholar 

  42. Colan SD, Lipshultz SE, Lowe AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115:773–781.

    Article  PubMed  Google Scholar 

  43. Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart. 2005;91:1199–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rivenes SM, Kearney DL, Smith EO, Towbin JA, Denfield SW. Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation. 2000;102:876–882.

    Article  CAS  PubMed  Google Scholar 

  45. Chen SC, Balfour IC, Jureidini S. Clinical spectrum of restrictive cardiomyopathy in children. J Heart Lung Transplant. 2001;20:90–92.

    Article  CAS  PubMed  Google Scholar 

  46. Denfield SW, Rosenthal G, Gajarski RJ, et al. Restrictive cardiomyopathies in childhood. Etiologies and natural history. Tex Heart Inst J. 1997;24:38–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Weller RJ, Weintraub R, Addonizio LJ, Chrisant MRK, Gersony WM, Hsu DT. Outcome of idiopathic restrictive cardiomyopathy in children. Am J Cardiol. 2002;90:501–506.

    Article  PubMed  Google Scholar 

  48. Kimberling MT, Balzer DT, Hirsch R, Mendeloff E, Huddleston CB, Canter CE. Cardiac transplantation for pediatric restrictive cardiomyopathy: presentation, evaluation, and short-term outcome. J Heart Lung Transplant. 2002;21:455–459.

    Article  PubMed  Google Scholar 

  49. Cetta F, O’Leary PW, Seward JB, Driscoll DJ. Idiopathic restrictive cardiomyopathy in childhood: diagnostic features and clinical course. Mayo Clin Proc. 1995;70:634–640.

    Article  CAS  PubMed  Google Scholar 

  50. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–2678.

    Article  PubMed  Google Scholar 

  51. Towbin JA, Bowles NE. The failing heart. Nature. 2002;415:227–233.

    Article  CAS  PubMed  Google Scholar 

  52. Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997;72:257–265.

    Article  CAS  PubMed  Google Scholar 

  53. Spencer CT, Bryant RM, Day J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics. 2006;118:e337–e346.

    Article  PubMed  Google Scholar 

  54. D’Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet. 1997;61:862–867.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weiford BC, Subbarao VD, Mulhern KM. Noncompaction of the ventricular myocardium. Circulation. 2004;109:2965–2971.

    Article  PubMed  Google Scholar 

  56. Ritter M, Oechslin E, Sutsch G, Attenhofer C, Schneider J, Jenni R. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc. 1997;72:26–31.

    Article  CAS  PubMed  Google Scholar 

  57. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.

    Article  CAS  PubMed  Google Scholar 

  58. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–513.

    Article  CAS  PubMed  Google Scholar 

  59. Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999;34:233–240.

    Article  CAS  PubMed  Google Scholar 

  60. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86:666–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kohli SK, Pantazis AA, Shah JS, et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J. 2008;29:89–95.

    Article  PubMed  Google Scholar 

  62. Soler R, Rodriguez E, Monserrat L, Alvarez N. MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J Comput Assist Tomogr. 2002;26:373–375.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Feingold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feingold, B., Webber, S.A. (2020). Acute Myocarditis and Cardiomyopathies. In: Munoz, R., Morell, V., da Cruz, E., Vetterly, C., da Silva, J. (eds) Critical Care of Children with Heart Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-21870-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21870-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21869-0

  • Online ISBN: 978-3-030-21870-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics