Skip to main content

Small-Angle Scattering in Structural Research of Nanodiamond Dispersions

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 223))

Abstract

The general interest in carbon nanomaterials is related to the wide possibilities of their functionalization for a variety of practical, including biomedical, applications. This class of substances includes ultra-fine nanodiamonds of detonation synthesis, which are formed as a result of the explosion of oxygen-unbalanced explosives in an inert medium (Ōsawa, Pure Appl Chem 80:1365–1379, 2008) [1]. Recently, a number of methods for obtaining liquid systems with detonation nanodiamonds have been developed. Their large specific surface area and a non-uniform charge distribution over particle surface leads to the clusterization of these particles, which, nevertheless, in many cases, does not break the stability of the system. Despite the fact that there are many theoretical and experimental works on the study of liquid systems with nanodiamonds, the problem of the relationship between the structure and stability of such systems in a wide range of concentrations remains insufficiently studied today. The particle interaction and the structure of such liquid nanosystems are the subjects which are of current interest in modern molecular physics (Shenderova and McGuire, Biointerphases 10:030802, 2015; Bulavin and Chalyi, Modern problems of molecular physics, 2018) [2, 3]. The corresponding studies constitute the basis for improving the synthesis technology of highly stable nanodiamond suspensions with predefined properties and for the creation of new liquid systems, better in general meaning. In recent decades, nuclear physics methods are becoming widespread in the research of nanosystems. Among these methods, small-angle scattering of thermal neutrons takes in important place (Feigin and Svergun, Structure analysis by small-angle X-ray and neutron scattering, 1987) [4]. The high penetrating power of this radiation, as well as the application of the neutron contrast variation technique, allow one to effectively investigate a supramolecular level of 1–1000 nm in multicomponent objects, including liquid systems with nanodiamonds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ōsawa, Monodisperse single nanodiamond particulates. Pure Appl. Chem. 80, 1365–1379 (2008). https://doi.org/10.1351/pac200880071365

    Article  Google Scholar 

  2. O.A. Shenderova, G.E. McGuire, Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10, 030802 (2015). https://doi.org/10.1116/1.4927679

    Article  Google Scholar 

  3. L.A. Bulavin, A.V. Chalyi, Modern Problems of Molecular Physics (Springer International Publishing AG, 2018), 374 pp. https://doi.org/10.1007/978-3-319-61109-9

    MATH  Google Scholar 

  4. L.A. Feigin, D.I. Svergun, in Structure Analysis by Small-Angle X-ray and Neutron Scattering, ed. by G.W. Taylor (Plenum Press, New York, 1987), 335 pp. https://doi.org/10.1007/978-1-4757-6624-0

  5. M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk, L.A. Bulavin, V.M. Garamus, E. Ōsawa, The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. J. Phys.: Condens. Matter. 25, 445001 (2013). https://doi.org/10.1088/0953-8984/25/44/445001

    ADS  Google Scholar 

  6. O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, O.I. Ivankov, A.Ya. Vul’, A.T. Dideikin, M.V. Avdeev, Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Cryst. 47, 642–653 (2014). https://doi.org/10.1107/S1600576714001216

    Article  Google Scholar 

  7. O.V. Tomchuk, D.S. Volkov, L.A. Bulavin, A.V. Rogachev, M.A. Proskurnin, M.V. Korobov, M.V. Avdeev, Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering. J. Phys. Chem. C 119, 794–802 (2015). https://doi.org/10.1021/jp510151b

    Article  Google Scholar 

  8. A.I. Kuklin, A.V. Rogachev, D.V. Soloviov, O.I. Ivankov, Y.S. Kovalev, P.K. Utrobin, S.A. Kutuzov, A.G. Soloviev, M.I. Rulev, V.I. Gordeliy, Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. J. Phys.: Conf. Ser. 848, 012010 (2017). https://doi.org/10.1088/1742-6596/848/1/012010

    Article  Google Scholar 

  9. A.I. Kuklin, A.Kh. Islamov, V.I. Gordeliy, Two-detector system for small-angle neutron scattering instrument. Neutron News 16, 16–18 (2005). https://doi.org/10.1080/10448630500454361

    Article  Google Scholar 

  10. H. Brumberger, Modern Aspects of Small-Angle Scattering (Kluwer Academic Publishers, Dordrecht, 1995), 463 pp. https://doi.org/10.1007/978-94-015-8457-9

    Google Scholar 

  11. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). https://doi.org/10.1038/nnano.2011.209

    Article  ADS  Google Scholar 

  12. A.L. Vereshchagin, Phase diagram of ultrafine carbon. Combust. Explos. Shock Waves 38, 358–359 (2002). https://doi.org/10.1023/A:1015618222919

    Article  Google Scholar 

  13. D.M. Gruen, Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–259 (1999). https://doi.org/10.1146/annurev.matsci.29.1.211

    Article  ADS  Google Scholar 

  14. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002). https://doi.org/10.1080/10408430208500497

    Article  ADS  Google Scholar 

  15. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992). https://doi.org/10.1038/358220a0

    Article  ADS  Google Scholar 

  16. L.-M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor, Stability of carbon nanotubes: how small can they be? Phys. Rev. Lett. 85, 3249–3252 (2000). https://doi.org/10.1103/PhysRevLett.85.3249

    Article  ADS  Google Scholar 

  17. Z. Mao, S.B. Sinnott, Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. J. Phys. Chem. B 105, 6916–6924 (2001). https://doi.org/10.1021/jp0103272

    Article  Google Scholar 

  18. J.A. Nuth III, Small-particle physics and interstellar diamonds. Nature 329, 589 (1987). https://doi.org/10.1038/329589b0

    Article  ADS  Google Scholar 

  19. D.L. Chapman, On the rate of explosion in gases. Philos. Mag. 47, 90–104 (1899). https://doi.org/10.1080/14786449908621243

    Article  MATH  Google Scholar 

  20. A. Krueger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul’, E. Osawa, Unusually tight aggregation in detonation diamond: identification and disintegration. Carbon 43, 1722–1730 (2005). https://doi.org/10.1016/j.carbon.2005.02.020

    Article  Google Scholar 

  21. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (A) Appl. Mater. Sci. 204, 2881–2887 (2007). https://doi.org/10.1002/pssa.200776330

    Article  ADS  Google Scholar 

  22. A. Krueger, The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485–1492 (2008). https://doi.org/10.1039/b716673g

    Article  ADS  Google Scholar 

  23. J. Maul, E. Marosits, C. Sudek, T. Berg, U. Ott, Lognormal mass distributions of nanodiamonds from proportionate vapor growth. Phys. Rev. B 72, 245401 (2005). https://doi.org/10.1103/PhysRevB.72.245401

    Article  ADS  Google Scholar 

  24. M.V. Avdeev, V.L. Aksenov, L. Rosta, Pressure induced changes in fractal structure of detonation nanodiamond powder by small-angle neutron scattering. Diam. Relat. Mater. 16, 2050–2053 (2007). https://doi.org/10.1016/j.diamond.2007.07.023

    Article  ADS  Google Scholar 

  25. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Krüger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). https://doi.org/10.1002/adma.200601452

    Article  Google Scholar 

  26. E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, M.A. Yagovkina, A. Ya Vul’, M. Takahashi, M. Inakuma, M. Ozawa, E. Ōsawa, A stable suspension of single ultrananocrystalline diamond particles. Diam. Relat. Mater. 14, 1765–1769 (2005). https://doi.org/10.1016/j.diamond.2005.08.057

    Article  ADS  Google Scholar 

  27. V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17, 13–22 (2008). https://doi.org/10.1016/j.diamond.2007.09.011

    Article  ADS  Google Scholar 

  28. V.Yu. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70, 607 (2001). https://doi.org/10.1070/RC2001v070n07ABEH000665

    Article  ADS  Google Scholar 

  29. I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004). https://doi.org/10.1134/1.1711440

    Article  ADS  Google Scholar 

  30. M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov, V.M. Garamus, R. Willumeit, E. O̅sawa, Aggregate structure in concentrated liquid dispersions of ultrananocrystalline diamond by small-angle neutron scattering. J. Phys. Chem. C. 113, 9473–9479 (2009). https://doi.org/10.1021/jp900424p

    Article  Google Scholar 

  31. A.N. Ozerin, T.S. Kurkin, L.A. Ozerina, V.Yu. Dolmatov, X-ray diffraction study of the structure of detonation nanodiamonds. Crystallogr. Rep. 53, 60–67 (2008). https://doi.org/10.1134/S1063774508010070

    Article  ADS  Google Scholar 

  32. V.Yu. Dolmatov, Detonation nanodiamonds in oils and lubricants. J. Superhard Mater. 32, 14–20 (2010). https://doi.org/10.3103/S1063457610010028

    Article  Google Scholar 

  33. M.V. Korobov, N.V. Avramenko, N.N. Bogachev, N.N. Rozhkova, E. Osawa, Nanophase of water in nano-diamond gel. J. Phys. Chem. C 111, 7330–7334 (2007). https://doi.org/10.1021/jp0683420

    Article  Google Scholar 

  34. A.Ya. Vul, E.D. Eidelman, A.E. Aleksenskiy, A.V. Shvidchenko, A.T. Dideikin, V.S. Yuferev, V.T. Lebedev, Yu.V. Kul’velis, M.V. Avdeev, Transition sol-gel in nanodiamond hydrosols. Carbon 114, 242–249 (2017). https://doi.org/10.1016/j.carbon.2016.12.007

    Article  Google Scholar 

  35. J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 037401 (2003). https://doi.org/10.1103/PhysRevLett.90.037401

    Article  ADS  Google Scholar 

  36. M. Zackrisson, A. Stradner, P. Schurtenberger, J. Bergenholtz, Small-angle neutron scattering on a core–shell colloidal system: a contrast-variation study. Langmuir 21, 10835–10845 (2005). https://doi.org/10.1021/la051664v

    Article  Google Scholar 

  37. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007). https://doi.org/10.1039/B710189A

    Article  Google Scholar 

  38. P.W. Schmidt, D. Avnir, D. Levy, A. Höhr, M. Steiner, A. Röll, Small-angle X-ray scattering from the surfaces of reversed-phase silicas: power-law scattering exponents of magnitudes grater then four. J. Chem. Phys. 94, 1474–1479 (1991). https://doi.org/10.1063/1.460006

    Article  ADS  Google Scholar 

  39. O.V. Tomchuk, M.V. Avdeev, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, Small-angle neutron scattering by fractal clusters in aqueous dispersions of nanodiamonds. Phys. Part. Nucl. Lett. 8, 1046–1048 (2011). https://doi.org/10.1134/S1547477111100177

    Article  Google Scholar 

  40. O.V. Tomchuk, M.V. Avdeev, V.L. Aksenov, V.M. Garamus, L.A. Bulavin, S.N. Ivashevskaya, N.N. Rozhkova, N. Schreiber, J. Schreiber, Comparative structural characterization of the water dispersions of detonation nanodiamonds by small-angle neutron scattering. J. Surf. Invest. X-ray Synchrotron Neutron Tech. 6, 821–824 (2012). https://doi.org/10.1134/S1027451012100151

    Article  Google Scholar 

  41. L.A. Bulavin, O.V. Tomchuk, M.V. Avdeev, Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering. Nucl. Phys. At. Energy 16, 198–202 (2015). https://doi.org/10.15407/jnpae2015.02.198

    Article  Google Scholar 

  42. M.V. Avdeev, O.V. Tomchuk, O.I. Ivankov, A.E. Alexenskii, A.T. Dideikin, A.Ya. Vul, On the structure of concentrated detonation nanodiamond hydrosols with a positive ζ potential: analysis of small-angle neutron scattering. Chem. Phys. Lett. 658, 58–62 (2016). https://doi.org/10.1016/j.cplett.2016.06.010

    Article  ADS  Google Scholar 

  43. M.V. Avdeev, Contrast variation in small-angle scattering experiments on polydisperse and superparamagnetic systems: basic function approach. J. Appl. Crystallogr. 40, 56–70 (2007). https://doi.org/10.1107/S0021889806049491

    Article  Google Scholar 

  44. A.E. Aleksenskiy, E.D. Eydelman, A.Ya. Vul’, Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011). https://doi.org/10.1166/nnl.2011.1122

    Article  Google Scholar 

  45. P.W. Schmidt, Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Crystallogr. 24, 414–435 (1991). https://doi.org/10.1107/S0021889891003400

    Article  Google Scholar 

  46. J. Feder, Fractals (Plenum Press, New York, 1989), p. 283. https://doi.org/10.1007/978-1-4899-2124-6

    Book  MATH  Google Scholar 

  47. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, San Francisco, 1982), 656 pp. https://doi.org/10.1002/esp.3290080415

    Article  ADS  Google Scholar 

  48. P.W. Schmidt, Use of scattering to determine the fractal dimension, in The Fractal Approach to Heterogeneous Chemistry, ed. by D. Avnir (Wiley, Chichester, 1989), pp. 67–79. https://doi.org/10.1002/adma.19900020913

    Article  Google Scholar 

  49. G. Beaucage, Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29, 134–149 (1996). https://doi.org/10.1107/S0021889895011605

    Article  Google Scholar 

  50. G. Beaucage, H.K. Kammler, S.E. Pratsinis, Particle size distributions from small-angle scattering using global scattering functions. J. Appl. Crystallogr. 37, 523–535 (2004). https://doi.org/10.1107/S0021889804008969

    Article  Google Scholar 

  51. G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717–728 (1995). https://doi.org/10.1107/S0021889895005292

    Article  Google Scholar 

  52. A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diam. Relat. Mater. 12, 1867–1872 (2003). https://doi.org/10.1016/S0925-9635(03)00275-9

    Article  ADS  Google Scholar 

  53. V.L. Kuznetsov, Yu.V. Butenko, Synthesis, in Properties and Applications of Ultrananocrystalline Diamond, ed. by D.M. Gruen, O.A. Shenderova, A.Ya. Vul’ (Springer, Dordrecht, 2005), pp. 199–216. https://doi.org/10.1007/1-4020-3322-2_15

  54. T. Jiang, K. Xu, FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33, 1663–1671 (1995). https://doi.org/10.1016/0008-6223(95)00115-1

    Article  ADS  Google Scholar 

  55. E. Mironov, A. Koretz, E. Petrov, Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diam. Relat. Mater. 11, 872–876 (2002). https://doi.org/10.1016/S0925-9635(01)00723-3

    Article  ADS  Google Scholar 

  56. D. Mitev, R. Dimitrova, M. Spassova, C. Minchev, S. Stavrev, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam. Relat. Mater. 16, 776–780 (2007). https://doi.org/10.1016/j.diamond.2007.01.005

    Article  ADS  Google Scholar 

  57. V.K. Kuznetsov, M.N. Aleksandrov, I.V. Zagoruiko, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, V.A. Likholobov, P.N. Brvlvakov, G.V. Sakovitch, Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29, 665–668 (1991). https://doi.org/10.1016/0008-6223(91)90135-6

    Article  Google Scholar 

  58. A. Barras, J. Lyskawa, S. Szunerits, P. Woisel, R. Boukherroub, Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27, 12451–12457 (2011). https://doi.org/10.1021/la202571d

    Article  Google Scholar 

  59. I. Hannstein, A.-K. Adler, V. Lapina, V. Osipov, J. Opitz, J. Schreiber, N. Meyendorf, Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring, in Proceedings of Conference on “Smart Sensor Phenomena, Technology, Networks, and Systems” (SPIE) (San Diego, USA, 2009), p. 729300. https://doi.org/10.1117/12.815486

  60. T.A. Witten, L.M. Sander, Diffusion-limited aggregation. Phys. Rev. B 27, 5686–5697 (1983). https://doi.org/10.1103/PhysRevB.27.5686

    Article  MathSciNet  ADS  Google Scholar 

  61. C. Oh, C.M. Sorensen, Structure factor of diffusion-limited aggregation clusters: local structure and non-self-similarity. Phys. Rev. E 57, 784–790 (1998). https://doi.org/10.1103/PhysRevE.57.784

    Article  ADS  Google Scholar 

  62. A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 18, 4038–4041 (2008). https://doi.org/10.1039/B809188A

    Article  Google Scholar 

  63. M.V. Korobov, D.S. Volkov, N.V. Avramenko, L.A. Belyaeva, P.I. Semenyuk, M.A. Proskurnin, Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. Nanoscale. 5, 1529–1536 (2013). https://doi.org/10.1039/C2NR33512C

    Article  ADS  Google Scholar 

  64. W. Peng, R. Mahfouz, J. Pan, Y. Hou, P.M. Beaujuge, O.M. Bakr, Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5, 5017–5026 (2013). https://doi.org/10.1039/C3NR00990D

    Article  ADS  Google Scholar 

  65. B.H. Zimm, The scattering of light and the radial distribution function of high polymer solutions. J. Chem. Phys. 16, 1093–1099 (1948). https://doi.org/10.1063/1.1746738

    Article  ADS  Google Scholar 

  66. M.V. Avdeev, V.L. Aksenov, Small-angle neutron scattering in structure research of magnetic fluids. Phys. Usp. 53(10), 971–993 (2010). https://doi.org/10.3367/UFNe.0180.201010a.1009

    Article  ADS  Google Scholar 

  67. A.V. Nagornyi, L.A. Bulavin, V.I. Petrenko, O.I. Ivankov, O.V. Tomchuk, M.V. Avdeev, L. Vékás, Determination of the structure factor of interparticle interactions in the ferrofluid by small-angle neutron scattering. Nucl. Phys. At. Energy 15, 59–65 (2014). In a public access: http://jnpae.kinr.kiev.ua/15.1/Articles_PDF/jnpae-2014-15-0059-Nagornyi.pdf

  68. A. Vrij, Mixtures of hard spheres in the Percus-Yevick approximation. Light scattering at finite angles. J. Chem. Phys. 71, 3267–3270 (1979). https://doi.org/10.1063/1.438756

    Article  ADS  Google Scholar 

  69. D. Frenkel, R.J. Vos, C.G. de Kruif, A. Vrij, Structure factors of polydisperse systems of hard spheres: a comparison of Monte Carlo simulations and Percus-Yevick theory. J. Chem. Phys. 84, 4625–4630 (1986). https://doi.org/10.1063/1.449987

    Article  ADS  Google Scholar 

  70. B.B. Mandelbrot, Plane DLA is not self-similar; it is a fractal that becomes increasingly compact as it grows? Phys. A 191, 95–107 (1992). https://doi.org/10.1016/0378-4371(92)90511-N

    Article  Google Scholar 

  71. P. Meakin, Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51, 1119–1122 (1983). https://doi.org/10.1103/PhysRevLett.51.1119

    Article  ADS  Google Scholar 

  72. O.A. Kyzyma, A.V. Tomchuk, M.V. Avdeev, T.V. Tropin, V.L. Aksenov, M.V. Korobov, Structural researches of carbonic fluid nanosystems. Ukr. J. Phys. 60, 835–843 (2015). https://doi.org/10.15407/ujpe60.09.0835

    Article  Google Scholar 

  73. O.V. Tomchuk, M.V. Avdeev, A.E. Aleksenskii, A.Ya. Vul, O.I. Ivankov, V.V. Ryukhtin, J. Füzi, V.M. Garamus, L.A. Bulavin, Sol–gel transition in nanodiamond aqueous dispersions by small-angle scattering. J. Phys. Chem. C 123(29), 18028–18036 (2019). https://doi.org/10.1021/acs.jpcc.9b03175

    Article  Google Scholar 

Download references

Acknowledgements

Experimental data demonstrated in this review were obtained by the authors in collaboration with a number of research groups from various research centers including Joint Institute for Nuclear Research (JINR) (Dubna, Russia), Taras Shevchenko National University of Kyiv (TSNUK) (Ukraine), NanoCarbon Research Institute (NCRI) (Ueda, Japan), Lomonosov Moscow State University (LMSU) (Russia), Ioffe Institute (St. Petersburg, Russia), Nuclear Physics Institute, Czech Academy of Sciences (NPI CAS) (Řež, Czech Republic), Budapest neutron center (BNC) (Hungary), Helmholtz Zentrum Geesthacht (HZG) (Germany).

The authors are grateful to Ōsawa E. (NCRI), Vul’ A. Ya. (Ioffe institute), Korobov M. V. (LMSU), Rosta L. (BNC), Ivankov O. I. (JINR), Ryukhtin V. V. (NPI ASCR), Garamus V. M. (HZG), Nagorny A. V. (TSNUK, JINR) for the help in the preparation of DND samples, performing SANS experiments and useful discussions.

Tomchuk O. V. acknowledges the support from the Russian Science Foundation (Project No. 18-72-00099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Avdeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomchuk, O.V., Bulavin, L.A., Aksenov, V.L., Avdeev, M.V. (2019). Small-Angle Scattering in Structural Research of Nanodiamond Dispersions. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_8

Download citation

Publish with us

Policies and ethics