Skip to main content

Group Level MEG/EEG Source Imaging via Optimal Transport: Minimum Wasserstein Estimates

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

Magnetoencephalography (MEG) and electroencephalography (EEG) are non-invasive modalities that measure the weak electromagnetic fields generated by neural activity. Inferring the location of the current sources that generated these magnetic fields is an ill-posed inverse problem known as source imaging. When considering a group study, a baseline approach consists in carrying out the estimation of these sources independently for each subject. The ill-posedness of each problem is typically addressed using sparsity promoting regularizations. A straightforward way to define a common pattern for these sources is then to average them. A more advanced alternative relies on a joint localization of sources for all subjects taken together, by enforcing some similarity across all estimated sources. An important advantage of this approach is that it consists in a single estimation in which all measurements are pooled together, making the inverse problem better posed. Such a joint estimation poses however a few challenges, notably the selection of a valid regularizer that can quantify such spatial similarities. We propose in this work a new procedure that can do so while taking into account the geometrical structure of the cortex. We call this procedure Minimum Wasserstein Estimates (MWE). The benefits of this model are twofold. First, joint inference allows to pool together the data of different brain geometries, accumulating more spatial information. Second, MWE are defined through Optimal Transport (OT) metrics which provide a tool to model spatial proximity between cortical sources of different subjects, hence not enforcing identical source location in the group. These benefits allow MWE to be more accurate than standard MEG source localization techniques. To support these claims, we perform source localization on realistic MEG simulations based on forward operators derived from MRI scans. On a visual task dataset, we demonstrate how MWE infer neural patterns similar to functional Magnetic Resonance Imaging (fMRI) maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlfors, S.P., Ilmoniemi, R.J., Hämäläinen, M.S.: Estimates of visually evoked cortical currents. Electroencephalogr. Clin. Neurophysiol. 82(3), 225–236 (1992/2018)

    Article  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: NIPS (2007)

    Google Scholar 

  3. Benamou, J., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman Projections For Regularized Transportation Problems. Society for Industrial and Applied Mathematics (2015)

    Google Scholar 

  4. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Scaling Algorithms for Unbalanced Transport Problems. arXiv:1607.05816 [math.OC] (2017)

  5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: NIPS (2013)

    Google Scholar 

  6. Dale, A.M., et al.: Dynamic statistical parametric mapping. Neuron 26(1), 55–67 (2000)

    Article  Google Scholar 

  7. Fercoq, O., Richtárik, P.: Accelerated, parallel and proximal coordinate descent. SIAM J. Optim. 25, 1997–2023 (2015)

    Article  MathSciNet  Google Scholar 

  8. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999). Mathematics in Brain Imaging

    Article  Google Scholar 

  9. Gramfort, A., et al.: MNE software for processing MEG and EEG data. NeuroImage 86, 446–460 (2013)

    Article  Google Scholar 

  10. Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M., Kowalski, M.: Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. NeuroImage 70, 410–422 (2013)

    Article  Google Scholar 

  11. Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)

    Article  Google Scholar 

  12. Hämäläinen, M.S., Sarvas, J.: Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol. 32(1), 91 (1987)

    Article  Google Scholar 

  13. Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76 (2011)

    Article  Google Scholar 

  14. Jalali, A., Ravikumar, P., Sanghavi, S., Ruan, C.: A dirty model for multi-task learning. In: NIPS (2010)

    Google Scholar 

  15. Janati, H., Cuturi, M., Gramfort, A.: Wasserstein regularization for sparse multi-task regression (2018)

    Google Scholar 

  16. Kantorovic, L.: On the translocation of masses. C.R. Acad. Sci. URSS (1942)

    Google Scholar 

  17. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17(11), 4302–4311 (1997)

    Article  Google Scholar 

  18. Knopp, P., Sinkhorn, R.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 1(2), 343–348 (1967)

    MathSciNet  MATH  Google Scholar 

  19. Kozunov, V.V., Ossadtchi, A.: Gala: group analysis leads to accuracy, a novel approach for solving the inverse problem in exploratory analysis of group MEG recordings. Front. Neurosci. 9, 107 (2015)

    Article  Google Scholar 

  20. Larson, E., Maddox, R.K., Lee, A.K.C.: Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences. Front. Neurosci. 8, 330 (2014)

    Article  Google Scholar 

  21. Lim, M., Ales, J., Cottereau, B.M., Hastie, T., Norcia, A.M.: Sparse EEG/MEG source estimation via a group lasso. PLOS (2017)

    Google Scholar 

  22. Lozano, A., Swirszcz, G.: Multi-level lasso for sparse multi-task regression. In: ICML (2012)

    Google Scholar 

  23. Mainini, E.: A description of transport cost for signed measures. J. Math. Sci. 181(6), 837–855 (2012)

    Article  MathSciNet  Google Scholar 

  24. Massias, M., Fercoq, O., Gramfort, A., Salmon, J.: Generalized concomitant multi-task lasso for sparse multimodal regression. In: Proceedings of Machine Learning Research, vol. 84, pp. 998–1007. PMLR, 09–11 April 2018

    Google Scholar 

  25. Ndiaye, E., Fercoq, O., Gramfort, A., Leclère, V., Salmon, J.: Efficient smoothed concomitant lasso estimation for high dimensional regression. J. Phys.: Conf. Ser. 904(1), 012006 (2017)

    Google Scholar 

  26. Okada, Y.: Empirical bases for constraints in current-imaging algorithms. Brain Topogr. 5, 373–377 (1993)

    Article  Google Scholar 

  27. Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemp. Math. 443, 59–72 (2007)

    Article  MathSciNet  Google Scholar 

  28. Pascual-Marqui, R.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp. Clin. Pharmacol. 24, D:5–D:12 (2002)

    Google Scholar 

  29. Profeta, A., Sturm, K.T.: Heat flow with dirichlet boundary conditions via optimal transport and gluing of metric measure spaces (2018)

    Google Scholar 

  30. Strohmeier, D., Bekhti, Y., Haueisen, J., Gramfort, A.: The iterative reweighted mixed-norm estimate for spatio-temporal MEG/EEG source reconstruction. IEEE Trans. Med. Imaging 35(10), 2218–2228 (2016)

    Article  Google Scholar 

  31. Sun, T., Zhang, C.H.: Scaled sparse linear regression. Biometrika 99, 879–898 (2012)

    Article  MathSciNet  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  Google Scholar 

  34. Uutela, K., Hämäläinen, M.S., Somersalo, E.: Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10(2), 173–180 (1999)

    Article  Google Scholar 

  35. Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_46

    Chapter  Google Scholar 

  36. Wakeman, D., Henson, R.: A multi-subject, multi-modal human neuroimaging dataset. Sci. Data 2(150001) (2015)

    Article  Google Scholar 

  37. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Janati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janati, H., Bazeille, T., Thirion, B., Cuturi, M., Gramfort, A. (2019). Group Level MEG/EEG Source Imaging via Optimal Transport: Minimum Wasserstein Estimates. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics