Skip to main content

A Showcase of the Use of Autoencoders in Feature Learning Applications

  • Conference paper
  • First Online:
From Bioinspired Systems and Biomedical Applications to Machine Learning (IWINAC 2019)

Abstract

Autoencoders are techniques for data representation learning based on artificial neural networks. Differently to other feature learning methods which may be focused on finding specific transformations of the feature space, they can be adapted to fulfill many purposes, such as data visualization, denoising, anomaly detection and semantic hashing.

This work presents these applications and provides details on how autoencoders can perform them, including code samples making use of an R package with an easy-to-use interface for autoencoder design and training, ruta. Along the way, the explanations on how each learning task has been achieved are provided with the aim to help the reader design their own autoencoders for these or other objectives.

D. Charte is supported by the Spanish Ministry of Science, Innovation and Universities under the FPU National Program (Ref. FPU17/04069). This work is supported by the Spanish National Research Projects TIN2015-68854-R and TIN2017-89517-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989). https://doi.org/10.1016/0893-6080(89)90014-2

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  3. Charte, D., Charte, F., García, S., Herrera, F.: A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations. Prog. Artif. Intell. 8, 1–14 (2019). https://doi.org/10.1007/s13748-018-00167-7

    Article  Google Scholar 

  4. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018). https://doi.org/10.1016/j.inffus.2017.12.007

    Article  Google Scholar 

  5. Charte, D., Herrera, F., Charte, F.: Ruta: implementations of neural autoencoders in R. Knowl.-Based Syst. (in press)

    Google Scholar 

  6. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  7. Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. In: Deep Learning, pp. 326–366. MIT Press (2016). http://www.deeplearningbook.org

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong, C., Yu, J., Wan, J., Tao, D., Wang, M.: Multimodal deep autoencoder for human pose recovery. IEEE Trans. Image Process. 24(12), 5659–5670 (2015). https://doi.org/10.1109/TIP.2015.2487860

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, P., Liu, Y., Sun, M.: Recursive autoencoders for ITG-based translation. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 567–577 (2013)

    Google Scholar 

  11. Lu, X., Tsao, Y., Matsuda, S., Hori, C.: Speech enhancement based on deep denoising autoencoder. In: Interspeech, pp. 436–440 (2013)

    Google Scholar 

  12. Park, S., Kim, M., Lee, S.: Anomaly detection for http using convolutional autoencoders. IEEE Access 6, 70884–70901 (2018). https://doi.org/10.1109/ACCESS.2018.2881003

    Article  Google Scholar 

  13. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pp. 4–11. ACM (2014). https://doi.org/10.1145/2689746.2689747

  14. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 835–851. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_51

    Chapter  Google Scholar 

  15. Wang, H., Shi, X., Yeung, D.Y.: Relational stacked denoising autoencoder for tag recommendation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  16. Wang, X., Peng, D., Hu, P., Sang, Y.: Adversarial correlated autoencoder for unsupervised multi-view representation learning. Knowl.-Based Syst. (2019). https://doi.org/10.1016/j.knosys.2019.01.017

    Article  Google Scholar 

  17. Wicker, J., Tyukin, A., Kramer, S.: A nonlinear label compression and transformation method for multi-label classification using autoencoders. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 328–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_27

    Chapter  Google Scholar 

  18. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  19. Xiong, P., Wang, H., Liu, M., Zhou, S., Hou, Z., Liu, X.: ECG signal enhancement based on improved denoising auto-encoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016). https://doi.org/10.1016/j.engappai.2016.02.015

    Article  Google Scholar 

  20. Xu, J., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016). https://doi.org/10.1109/tmi.2015.2458702

    Article  MathSciNet  Google Scholar 

  21. Xu, W., Sun, H., Deng, C., Tan, Y.: Variational autoencoder for semi-supervised text classification. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Charte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charte, D., Charte, F., del Jesus, M.J., Herrera, F. (2019). A Showcase of the Use of Autoencoders in Feature Learning Applications. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science(), vol 11487. Springer, Cham. https://doi.org/10.1007/978-3-030-19651-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19651-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19650-9

  • Online ISBN: 978-3-030-19651-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics