Skip to main content

Bioactive Compounds Produced by Antarctic Filamentous Fungi

  • Chapter
  • First Online:
Fungi of Antarctica

Abstract

Antarctica is one of the most unexplored environments on the Earth. This continent is permanently subjected to very low temperatures and other extreme conditions. However, despite these harsh environmental conditions, many species of filamentous fungi inhabit Antarctica. These fungi would have developed different strategies to survive in this polar region, including specific genetic and metabolic mechanisms to produce new secondary metabolites, which would be a potential source of new pharmaceutical molecules. To date, several studies have showed that chemical extracts obtained from fungi isolated in Antarctica have promising biological activities, including antimicrobial, antiviral, and antiparasitic activities, among others. In addition, several chemical compounds obtained from Antarctic fungi show new and unusual structural features. In this chapter, we summarize the studies about biological activities of extracts obtained from filamentous fungi isolated in different Antarctic environments. In addition, we have performed an inventory of all the new chemical compounds obtained so far from filamentous fungi isolated in Antarctica. Altogether, these studies highlight the importance of natural products from Antarctic filamentous fungi as source of novel bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avila C, Taboada S, Núñez-Pons L (2007) Antarctic marine chemical ecology: what is next? Mar Ecol 29:1–71

    Article  Google Scholar 

  • Biondi N, Tredici MR, Taton A et al (2008) Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J Appl Microbiol 105:105–115

    Article  CAS  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  Google Scholar 

  • Brunati M, Rojas JL, Sponga F et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50

    Article  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  Google Scholar 

  • Chan YA, Podevels AM, Kevany BM et al (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26:90–114

    Article  CAS  Google Scholar 

  • Chávez R, Fierro F, García-Rico R et al (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903

    Article  Google Scholar 

  • Coleine C, Stajich J, Zucconi L et al (2018) Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front Microbiol 9:1–14

    Article  Google Scholar 

  • Connell L, Rodriguez R, Redman R et al (2014) Cold-adapted yeasts in Antarctic Deserts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer-Verlag Berlin Heidelberg, pp 75–98

    Google Scholar 

  • Ding Z, Li L, Che Q et al (2016) Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20:425–435

    Article  CAS  Google Scholar 

  • Figueroa L, Jiménez C, Rodríguez J et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923

    Article  CAS  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  Google Scholar 

  • Godinho VM, Furbino LE, Santiago LF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  • Hayashi M, Kim YP, Hiraoka H et al (1995) Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 48:1435–1439

    Article  CAS  Google Scholar 

  • Held BW, Blanchette RA (2017) Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol 121:45–157

    Article  Google Scholar 

  • Hemer MA (2003) The oceanographic influence of sedimentation in the continental shelf: a numerical comparison between tropical and Antarctic environments. Doctor of Philosophy, University of Tasmania

    Google Scholar 

  • Henríquez M, Vergara K, Norambuena J et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    Article  Google Scholar 

  • Ivanova V, Kolarova M, Aleksieva K (2007) Diphenylether and macrotriolides occurring in a fungal isolate from the Antarctic lichen Neuropogon. Prep Biochem Biotechnol 37:39–45

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  Google Scholar 

  • Kjer J, Debbab A, Aly AH et al (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

    Article  CAS  Google Scholar 

  • Kozlovskii AG, Zhelifonova VP, Antipova TV et al (2012) Secondary metabolite profiles of the Penicillium fungi isolated from the Arctic and Antarctic permafrost as elements of polyphase taxonomy. Microbiol 81:306–311

    Article  CAS  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  CAS  Google Scholar 

  • Li Y, Sun B, Liu S et al (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646

    Article  CAS  Google Scholar 

  • Li L, Li D, Luan Y et al (2012) Cytotoxic metabolites from the Antarctic psychrophilic fungus Oidiodendron truncatum. J Nat Prod 75:920–927

    Article  CAS  Google Scholar 

  • Li XD, Li XM, Xu GM et al (2015) Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus. J Nat Prod 78:844–849

    Article  CAS  Google Scholar 

  • Li W-T, Luo D, Huang J-N et al (2018) Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res 32:662–667

    Article  CAS  Google Scholar 

  • Lin A, Wu G, Gu Q et al (2014) New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch Pharm Res 37:839–844

    Article  CAS  Google Scholar 

  • Liu CC, Zhang ZZ, Feng YY et al. (2019) Secondary metabolites from Antarctic marine-derived fungus HDN153086. Nat Prod Res 33:414-419

    Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Macheleidt J, Mattern DJ, Fischer J et al (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392

    Article  CAS  Google Scholar 

  • Mahesh BS, Warrier AK, Mohan R et al (2015) Response of long lake sediments to Antarctic climate: a perspective gained from sedimentary organic geochemistry and particle size analysis. Pol Sci 9:350–367

    Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ et al (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368

    Article  Google Scholar 

  • Melo IS, Santos SN, Rosa LH et al (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    Article  CAS  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  Google Scholar 

  • Nakajima H, Hamasaki T, Kimura Y (1989) Structure of spiciferone A, a novel gamma-pyrone plant-growth inhibitor produced by the fungus Cochliobolus spicifer. Nelson Agric Biol Chem 53:2297–2299

    CAS  Google Scholar 

  • Nakajima H, Hamasaki T, Maeta S et al (1990) A plant-growth regulator produced by the fungus Cochliobolus spicifer. Phytochemistry 29:1739–1743

    Article  CAS  Google Scholar 

  • Nielsen KF, Larsen TO (2015) The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 71:1–15

    Google Scholar 

  • Nishanth Kumar SN, Mohandas C, Nambisan B (2014) Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides 53:48–58

    Article  CAS  Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM et al (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1630–1647

    Article  Google Scholar 

  • Purić J, Vieira G, Cavalca LB et al (2018) Activity of Antarctic fungi extracts against phytopathogenic bacteria. Lett Appl Microbiol 66:530–536

    Article  Google Scholar 

  • Ren J, Xue C, Tian L et al (2009) Asperelines A-F, peptaibols from the marine-derived fungus Trichoderma asperellum. J Nat Prod 72:1036–1044

    Article  CAS  Google Scholar 

  • Ren J, Yang Y, Liu D et al (2013) Sequential determination of new peptaibolsasperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressureliquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr 1309:90–95

    Article  CAS  Google Scholar 

  • Rusman Y, Held BW, Blanchette RA et al (2018) Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica. Phytochemistry 148:1–10

    Article  CAS  Google Scholar 

  • Santiago IF, Alves TM, Rabello A et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  Google Scholar 

  • Song L, Barona-Gomez F, Corre C (2006) Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755

    Article  CAS  Google Scholar 

  • Spiteller P (2015) Chemical ecology of fungi. Nat Prod Rep 32:971–993

    Article  CAS  Google Scholar 

  • Suryanarayanan T (2012) Fungal endosymbionts of seaweeds. Progr Mol Subcell Biol 53:53–69

    Article  CAS  Google Scholar 

  • Svahn KS, Chryssanthou E, Olsen B et al (2015) Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotech 2:1–8

    Article  Google Scholar 

  • Tian Y, Li Y-L, Zhao F-C (2017) Secondary metabolites from polar organisms. Mar Drugs 15:28–58

    Article  Google Scholar 

  • Vieira G, Purić J, Morão LG et al (2018) Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. Citri. Lett Appl Microbiol 67:64–71

    Article  CAS  Google Scholar 

  • Wang J, Wei X, Qin X et al (2015a) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79:59–65

    Article  Google Scholar 

  • Wang J, He W, Qin X et al (2015b) Three new indolyl diketopiperazine metabolites from the antarctic soil-derived fungus Penicillium sp. SCSIO 05705. RSC Adv 5:68736–68742

    Article  CAS  Google Scholar 

  • Wang J, He W, Kong F et al (2017) Ochracenes A−I, humulane-derived sesquiterpenoids from the Antarctic fungus Aspergillus ochraceopetaliformis. J Nat Prod 80:1725–1733

    Article  CAS  Google Scholar 

  • Wu G, Ma H, Zhu T et al (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749

    Article  CAS  Google Scholar 

  • Wu G, Lin A, Gu Q et al (2013) Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11:1399–1408

    Article  CAS  Google Scholar 

  • Yu JH, Keller NP (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  Google Scholar 

  • Zhou H, Li L, Wang W (2015) Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J Nat Prod 78:1442–1445

    Article  CAS  Google Scholar 

  • Zhou H, Li L, Wu C et al (2016) Penipyridones A−F, pyridone alkaloids from Penicillium funiculosum. J Nat Prod 79:1783–1790

    Article  CAS  Google Scholar 

  • Zhou Y, Li Y-H, Yua H-B et al (2017) Furanone derivative and sesquiterpene from Antarctic marine-derived fungus Penicillium sp. S-1-18. J Asian Nat Prod Res 20:1108–1115

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of projects FONDECYT 1150894, INACH RG_15-14, and DICYT-USACH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Vaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaca, I., Chávez, R. (2019). Bioactive Compounds Produced by Antarctic Filamentous Fungi. In: Rosa, L. (eds) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_12

Download citation

Publish with us

Policies and ethics