Skip to main content
  • 1137 Accesses

Abstract

Historically, in the microbiological contamination control (MCC) of small molecule drugs (SMDs) and large volume parenterals (LVPs), the adaptive immune response was of little concern. Fever, as a systemic response, as measured first in a rabbit then as correlated in an in vitro horseshoe crab blood test, has been the gauge used to monitor endotoxin presence as a contaminant. The differences between biologics and small molecule drugs (SMDs) that came before are detailed in this chapter and the next chapter. Major differences to be borne in mind here include: (i) the size and complexity of biologic molecules that exert their therapeutic influence by interacting with receptors on the outside of cells, (ii) the propensity for immune related responses and (iii) the potential for PAMPs to act as co-stimulatory signals to adaptive immunity (i.e. the “second signal” as described in Janeway’s 1989 lecture and as, in some cases, synonymous with the adjuvant effect of vaccinology). The latter provides a way to understand the immune stimulating effects of endotoxin that is separate from its historical role as “only a pyrogen”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code of Federal Regulations.

  2. 2.

    Division of Therapeutic Proteins, Office of Biotechnology Products, CDER, FDA, Bethesda, MD, USA.

  3. 3.

    Approaching the asymptope: Evolution and Revolution in Immunology, Cold Spring Harbor Symp. Quant Biol. 1989. 54: 1–13, Janeway, Pillars of Immunology.

  4. 4.

    “…Ruslan Medzhitov, Professor of Immunobiology at the Yale School of Medicine. In May (2013), he was awarded the first annual Lurie Prize in the Biomedical Sciences from the Foundation for the National Institutes of Health for his work on the immune system; in June (2013), he picked up another inaugural award, this one from the German Else Kröner Fresenius Foundation and worth an eye-watering €4 million.”

  5. 5.

    …with heat-labile superantigen toxins also being very potent.

  6. 6.

    Differential induction of the Toll-like receptor 4-MyD88-dependent and –independent signaling pathways by endotoxins, Zughaier et al., Infection and Immunity, May 2005, pg. 2940–2950.

  7. 7.

    Kdo2-Lipid A: Structural diversity and impact on immunopharmacology, Wang et al., Biol. Rev. 2015.

  8. 8.

    However, with the knowledge that has come from biologics therapy small molecule drugs are now also being used to target cell surface receptors.

  9. 9.

    Though there are some complex methods of weeding out self-reactive versions.

  10. 10.

    pMHC are peptides presented by major histocompatibility complex.

  11. 11.

    T helper cells (or CD4 cells).

  12. 12.

    Cytotoxic T cell (or CD8+ T-cell).

  13. 13.

    LCMV is Lymphocytic Choriomeningitis Virus.

  14. 14.

    dAb is domain antibody.

  15. 15.

    svFV is single-chain variable fragment.

  16. 16.

    as only plasma cells from activated B cells produce antibody.

  17. 17.

    “Epidermolysis bullosa acquisita (EBA) is an antibody-mediated blistering skin disease associated with tissue-bound and circulating autoantibodies to type VII collagen (COL7)” Mihai et al.

  18. 18.

    Human T-lymphotropic virus, a human retrovirus known to cause certain cancers.

  19. 19.

    CD59 and CD55 are human proteins.

  20. 20.

    “The only licensed vaccine against TB, Bacillle Calmette-Guerin (BCG), is effective at preventing disseminated disease in infants but confers highly variable efficacy against pulmonary TB in adults.” Why don’t we have an effective tuberculosis vaccine yet?, Tamara Davennea and Helen McShane, EXPERT REVIEW OF VACCINES, 2016 VOL. 15, NO. 8, 1009–1013.

References

  1. Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  2. Manavalan B, Basith S, Choi S. Similar structures but different roles – an updated perspective on TLR structures. Front Physiol. 2011;2:41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sela-Culang I, et al. The structural basis of antibody-antigen recognition. Front Immunol. 2013;4:302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ganellin CR, et al. Introduction to biological and small molecule drug research and development: theory and case studies. Waltham: Elsevier; 2013.

    Google Scholar 

  5. Buchholz U, et al. Pyrogenic reactions associated with single daily dosing of intravenous gentamicin. Infect Control Hosp Epidemiol. 2000;21(12):771–4.

    Article  CAS  PubMed  Google Scholar 

  6. Zuben E. Sauna Immunogenicity of protein-based therapeutics, FDA.gov, page last updated: 12/13/2017. 2017. https://www.fda.gov/BiologicsBloodVaccines/ScienceResearch/BiologicsResearchAreas/ucm246804.htm. Accessed 05 Apr 2019.

  7. Baldo BA. Safety of biologics therapy. Cham: Springer; 2017.

    Google Scholar 

  8. DellaGioia MS, Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev. 2010;34(1):130–43.

    Article  CAS  PubMed  Google Scholar 

  9. Centers for Disease Control and Prevention. Endotoxin-like reactions associated with intravenous gentamicin--California, 1998. MMWR Morb Mortal Wkly Rep. 1998;47(41):877–80.

    Google Scholar 

  10. Geirer MR, Stanbro H, Merril CR. Endotoxins in commercial vaccines. Appl Environ Microbiol. 1978;36(3):445–9.

    Google Scholar 

  11. Lollar P. The immune response to blood coagulation factor VIII, 14th annual immunogenicity for biotherapies. Baltimore: New York Institute for International Research; 2013.

    Google Scholar 

  12. Scott DW, De Groot AS. Can we prevent immunogenicity of human protein drugs? Ann Rheum Dis. 2010;69(Suppl I):i72–6.

    Article  CAS  PubMed  Google Scholar 

  13. De Groot AS, et al. Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics. Expert Rev Clin Pharmacol. 2013;6(6):651–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nielsen M, et al. MHC class II epitope predictive algorithms. Immunology. 2010;130(3):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanchez-Trincado JL, et al. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res. 2017;2017:2680160, 14 pages.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Immunogenicity assessment for therapeutic protein products. FDA, Guidance for Industry. 2014.

    Google Scholar 

  17. Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4):e0125078. https://doi.org/10.1371/journal.pone.0125078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bode C, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ziegler A, et al. A new RNA-based adjuvant enhances virus-specific vaccine responses by locally triggering TLR- and RLH-dependent effects. J Immunol. 2017;198(4):1595–605.

    Article  CAS  PubMed  Google Scholar 

  20. Pasare C, Medzhitov R. Control of B-cell responses by toll-like receptors. Nature. 2005;438:364.

    Article  CAS  PubMed  Google Scholar 

  21. Mosaheb MM, Reiser ML, Wezler LM. Toll-like receptor ligand-based vaccine adjuvants require intact MyD88 signaling in antigen-presenting cells for germinal center formation and antibody production. Front Immunol. 2017;8:225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Thompson BS, et al. The low-toxicity versisons of LPS, MPL® adjuvant and RC529, are efficient adjuvants for CD4+ cells. J Leukoc Biol. 2005;78:1273.

    Article  CAS  PubMed  Google Scholar 

  23. Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65(20):3231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vertheyli D, Wang V. Trace levels of Innate Immune Response Modulating Impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.

    Article  CAS  Google Scholar 

  25. Haile LA, et al. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4):e0125078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Haile LA, et al. Cell based assay identifies TLR2 and TLR4 stimulating impurities in interferon beta. Nat Sci Rep. 2017;7(1):10490.

    Article  CAS  Google Scholar 

  27. Link J, Ramanujam R, Auer M, Ryner M, Hässler S, Bachelet D, et al. Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: a descriptive study of test results. PLoS One. 2017;12(2):e0170395. https://doi.org/10.1371/journal.pone.0170395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy A, Nair S, Sen N, Soni N1, Madhusudhan MS. In silico methods for design of biological therapeutics. Methods. 2017;131:33–65. https://doi.org/10.1016/j.ymeth.2017.09.008. Epub 2017 Sep 27.

    Article  CAS  PubMed  Google Scholar 

  29. Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol. 2016;38:163–73.

    Article  CAS  PubMed  Google Scholar 

  30. Kuriakose A, et al. Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res. 2016;2016:1298473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Requirements for the use of animal cells as in vitro substrates for the production of biologicals. 878. 8–9. World Health Organization. Requirements for Biological Substrates. No. 50. 1998.

    Google Scholar 

  32. Schenk J, Hargie M, Brown M, Ebert D, Yoo A, et al. The enhancement of antibody formation by E. coli lipopolysaccharide and detoxified derivatives. J Immunol. 1969;114:770–5.

    Google Scholar 

  33. Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci U S A. 1997;94:10833–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krieg AM, Yi A, Matson S, Waldschmidt TJ, Bishop GA, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374:546–8.

    Article  CAS  PubMed  Google Scholar 

  35. Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol. 2005;125:629–37.

    Article  CAS  PubMed  Google Scholar 

  37. Smith KA. Toward a molecular understanding of adaptive immunity: a chronology, part I. Front Immunol. 2012;3:369.

    PubMed  PubMed Central  Google Scholar 

  38. Armerding D, Katz DH. Activation of T and B lymphocytes in vitro I. Regulatory influence of bacterial lipopolysaccharide (LPS) on specific T-cell helper function. J Exp Med. 1974;139:24–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Medzhitov R. Creative and conceptual immunologist, www.thelancet.com. Vol. 382. July 20, 2013 Accessed 1 Mar 2018.

  40. Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol. 2013;34(10):511–9.

    Article  CAS  PubMed  Google Scholar 

  41. Douglas SD, Douglas AG. Part VIII: monocytes and macrophages, Chapter 67. Structure, receptors, and functions of monocytes and macrophages. In: Kaushansky K, et al., editors. Williams hematology. 9th ed. New York: McGraw Hill; 2016. p. 1052.

    Google Scholar 

  42. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vincenti F, Luggen M. T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med. 2007;58:347–58.

    Article  CAS  PubMed  Google Scholar 

  44. Li XC, Rothstein DM, Sayegh MH. Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev. 2009;229:271–93.

    Article  CAS  PubMed  Google Scholar 

  45. Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol. 2009;21:293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov. 2013;12:147–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giuroiu I, Weber J. Novel checkpoints and cosignaling molecules in cancer immune-therapy. Cancer J. 2017;23:23–31.

    Article  CAS  PubMed  Google Scholar 

  48. Tansey MG, Szymkowski DE. The TNF superfamily in 2009: new pathways, new indications, and new drugs. Drug Discov Today. 2009;14:1082–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hoos A. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–47.

    Article  CAS  PubMed  Google Scholar 

  50. Konstantinidou M, Zarganes-Tzitzikas T, Magiera K, Holak TA, Dömling A. Immune checkpoint PD-1/PD-L1: is there life beyond antibodies? Angew Chem Int Ed Engl. 2018;57:4840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bojadzic D, et al. Design, synthesis, and evaluation of novel immunomodulatory small molecules targeting the CD40–CD154 costimulatory protein-protein interaction. Molecules. 2018;23:1153. https://doi.org/10.3390/molecules23051153.

    Article  CAS  PubMed Central  Google Scholar 

  52. van Kessel KP, Bestebroer J, van Strijp JA. Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front Immunol. 2014;5:467.

    PubMed  PubMed Central  Google Scholar 

  53. Engel P, et al. CD nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol. 2015;195:4555–63.

    Article  CAS  PubMed  Google Scholar 

  54. Jung Y, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci. 2016;113(40):E5916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim HR, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630. https://doi.org/10.1038/s41467-018-06090-8, www.nature.com/naturecommunications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shipkova M, Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta. 2012;413:1338–49.

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Reith M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett. 2010;584:4872–7.

    Article  CAS  PubMed  Google Scholar 

  58. Medzhitov R, Janeway Jr CA. On the semantics of immune recognition, 65th forum in immunology, Evolutionary origins of Igs and T-cell receptors. 1996.

    Google Scholar 

  59. Fischer WH, Hugli TE. Regulation of B cell functions by C3a and C3a(desArg): suppression of TNF-alpha, IL-6, and the polyclonal immune response. J Immunol. 1997;159:4279–86.

    CAS  PubMed  Google Scholar 

  60. Bekeredjian-Ding S, Inamura T, Giese H, Moll S, Endres S, Sing A, et al. Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. J Immunol. 2007;178:2803–12.

    Article  CAS  PubMed  Google Scholar 

  61. Kremlitzka M, Macsik-Valent B, Polgár A, Kiss E, Poór G, Erdei A. Poor, complement receptor type 1 (CD35) regulates TLR-mediated human B cell functions—a novel cross-talk between complement, TLRs and adaptive immunity occurring also in SLE patients Abstract, 15th European Meeting on complement. Hum Dis Mol Immunol. 2015;63:153–4.

    Article  CAS  Google Scholar 

  62. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood. 2011;118:1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kremlitzk M, et al. Regulation of B cell functions by Toll-like receptors and complement. Immunol Lett. 2016;178:37–44.

    Article  CAS  Google Scholar 

  64. Janeway CA. Approaching the asymptope: evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1–13. Pillars of immunology.

    Article  CAS  PubMed  Google Scholar 

  65. Paul WE. Bridging innate and adaptive immunity. Cell. 2011;147:1212.

    Article  CAS  PubMed  Google Scholar 

  66. Ralph DK, Matsen FA IV. Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation. PLoS Comput Biol. 2016;12(1):e1004409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Delves PJ, et al. Roitt’s essential immunology. New York: Wiley; 2017.

    Google Scholar 

  68. Fierz W. Conceptual spaces of the immune system. Front Immunol. 2016;7:551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhu Y, Yao S, Chen L. Cell surface signaling molecules in the control of immune responses: a tide model. Immunity. 2011;34(4):466–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. e Sousa CR. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6(6):476–83.

    Article  CAS  Google Scholar 

  71. Lin A, Loré K. Granulocytes: new members of the antigen-presenting cell family. Front Immunol. 2017;8:1781. https://doi.org/10.3389/fimmu.2017.01781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thaiss CA, Semmling V, Franken L, Wagner H, Kurts C. Chemokines: a new dendritic cell signal for T cell activation. Front Immunol. 2011 August;2:31.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Janeway J, Charles A. How the immune system works to protect the host from infection: a personal view. PNAS. 2001;98(13):7461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mak TW, Saunders ME, Jett BD. Primer to the immune response, academic cell. 2nd ed. Amsterdam: Elsevier; 2014. p. 210.

    Google Scholar 

  75. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bugeon L, Dallman MJ. Costimulation of T cells. Am J Respir Crit Care Med. 2000;162:S164.

    Article  CAS  PubMed  Google Scholar 

  77. Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol. 2005;125(629–637):2005.

    Google Scholar 

  78. Corse E, Gottschalk RA, Allison JP. Strength of TCR–peptide/MHC interactions and in vivo T cell responses. J Immunol. 2011;186:5039–45.

    Article  CAS  PubMed  Google Scholar 

  79. Gellina BG, Salisbury DM. Communicating the role and value of vaccine adjuvants. Vaccine. 2015;33S:B44–6.

    Article  CAS  Google Scholar 

  80. JP MA, Vella AT. Understanding how lipopolysaccharide impacts CD4 T cell immunity. Crit Rev Immunol. 2008;28(4):281–99.

    Article  Google Scholar 

  81. Podojil JR, Miller SD. Molecular mechanisms of T cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev. 2009;229(1):337–55. https://doi.org/10.1111/j.1600-065X.2009.00773.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med. 1997;185(12):2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Becker G, et al. The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int Immunol. 2000;12(6):807–15.

    Article  PubMed  Google Scholar 

  84. Medzhitov R. Approaching the asymptote: 20 years later. Immunity. 2009;30:766.

    Article  CAS  PubMed  Google Scholar 

  85. Daikh DI, Gillis J, Wofsy D. Inhibition of T cell costimulation: an emerging therapeutic strategy for autoimmune rheumatic diseases. Arthritis Care Res. 2006;55(2):322–4.

    Article  CAS  Google Scholar 

  86. Schildberg FA, et al. Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 2016;44:955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ford ML, Adams AB, Pearson TC. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nat Rev Nephrol. 2014;10(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  88. Grover RK, et al. The costimulatory immunogen LPS induces the B-cell clones that infiltrate transplanted human kidneys. PNAS. 2002;109(16):6036.

    Article  Google Scholar 

  89. Quintana FJ, et al. Induction of IgG3 to LPS via toll-like receptor 4 co-stimulation. PLoS One. 2008;3(10):e3509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Obukhanych TV, Nussenzweig MC. T-independent type II immune responses generate memory B cells. J Exp Med. 2006;203(2):305–10.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bluestone JA. Supplement: a balanced attack, The Scientist, 1 May 2007. https://www.the-scientist.com/uncategorized/supplement-a-balanced-attack-46498. 2007.

  92. Bluestone JA, et al. CTLA-4Ig: bridging the basic immunology with clinical application. Immunity. 2006;24:233–8.

    Article  CAS  PubMed  Google Scholar 

  93. Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008;223:143–55.

    Article  CAS  PubMed  Google Scholar 

  94. Chittasupho C, et al. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Ther Deliv. 2011;2(7):873.

    Article  CAS  PubMed  Google Scholar 

  95. Carroll MC, Isenman DE. Regulation of humoral immunity by complement. Immunity. 2012;37(2):199–207. https://doi.org/10.1016/j.immuni.2012.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dempsey PW, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–50.

    Article  CAS  PubMed  Google Scholar 

  97. DeFranco AL. B-cell co-receptors: the two-headed antigen. Curr Biol. 1996;6(5):548–50.

    Article  CAS  PubMed  Google Scholar 

  98. Kulik L, et al. A new mouse anti-mouse complement receptor type 2 and 1 (CR2/CR1) monoclonal antibody as a tool to study receptor involvement in chronic models of immune responses and disease. Mol Immunol. 2015;63(2):479–88. https://doi.org/10.1016/j.molimm.2014.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaya Z, et al. Complement receptors regulate lipopolysaccharide-induced T-cell stimulation. Immunology. 2005;114(4):493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Asokan R. Vital role of complement receptor 2 (CR2/CD21) along with other proteins in the pathogenesis of systemic lupus erythematosus. J Immunol Infect Inflamm Dis. 2017;2:2.

    Google Scholar 

  101. Toapanta FR, et al. C3d adjuvant activity is reduced by altering residues involved in the electronegative binding of C3d to CR2. Immunol Lett. 2010;129(1):32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kieslich CA, Morikis D. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity. PLoS Comput Biol. 2012;8(12):e1002840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barnum SR. Complement: a primer for the coming therapeutic revolution. Pharmacol Ther. 2017;172:63–72.

    Article  CAS  PubMed  Google Scholar 

  104. Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355:1233–43. https://doi.org/10.1056/NEJMoa061648.

    Article  CAS  PubMed  Google Scholar 

  105. Barilla-Labarca ML, Toder K, Furie R. Targeting the complement system in systemic lupus erythematosus and other diseases. Clin Immunol. 2013;148:313–21. https://doi.org/10.1016/j.clim.2013.02.014.

    Article  CAS  PubMed  Google Scholar 

  106. Mihai S, et al. Specific inhibition of complement activation significantly ameliorates autoimmune blistering disease in mice. Front Immunol. 2018; https://doi.org/10.3389/fimmu.2018.00535.

  107. Norde WJ, et al. Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood. 2012;120(4):728.

    Article  CAS  PubMed  Google Scholar 

  108. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://doi.org/10.1038/nrclinonc.2016.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. CAR T cells: engineering patients’ immune cells to treat their cancers, National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/research/car-t-cells. Accessed 30 Jan 2019.

  110. Allison JP, Hurwitz AA, Leach DR. Manipulation of costimulatory signals to enhance antitumor T-cell responses. Curr Opin Immunol. 1995;7:682–6.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang S, Wang Y, Jiang H, Liu C, Gu H, Chen S, et al. Association between the CD28 IVS3 +17T>C (rs3116496) polymorphism and cancer susceptibility: a meta-analysis involving 8,843 subjects. Int J Clin Exp Med. 2015;8:17353–61.

    PubMed  PubMed Central  Google Scholar 

  112. Chen X, Li H, Qiao Y, Yu D, Guo H, Tan W, et al. Association of CD28 gene polymorphism with cervical cancer risk in a Chinese population. Int J Immunogenet. 2011;38:51–4.

    Article  CAS  PubMed  Google Scholar 

  113. Karabon L, Pawlak E, Tomkiewicz A, Jedynak A, Passowicz-Muszynska E, Zajda K, et al. CTLA-4, CD28, and ICOS gene polymorphism associations with non-small-cell lung cancer. Hum Immunol. 2011;72:947–54.

    Article  CAS  PubMed  Google Scholar 

  114. Wu D, Tang R, Qi Q, Zhou X, Zhou H, Mao Y, et al. Five functional polymorphisms of B7/CD28 co-signaling molecules alter susceptibility to colorectal cancer. Cell Immunol. 2015;293:41–8.

    Article  CAS  PubMed  Google Scholar 

  115. Chen S, Zhang Q, Shen L, Liu Y, Xu F, Li D, et al. Investigation of CD28 gene polymorphisms in patients with sporadic breast cancer in a Chinese Han population in Northeast China. PLoS One. 2012;7:e48031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tupikowski K, Partyka A, Kolodziej A, Dembowski J, Debinski P, Halon A, et al. CTLA-4 and CD28 genes’ polymorphisms and renal cell carcinoma susceptibility in the Polish population–a prospective study. Tissue Antigens. 2015;86:353–61.

    Article  CAS  PubMed  Google Scholar 

  117. Yan Y, Zhang X. The association between CD28 gene rs3116496 polymorphism and breast cancer risk in Chinese women. Biosci Rep. 2017;37:BSR20170884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sieber S, et al. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67:280–309.

    Article  CAS  Google Scholar 

  119. Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res. 2018;134:118–33.

    Article  CAS  PubMed  Google Scholar 

  120. Samy KP, et al. Corrigendum-corrigendum to “the role of Costimulation blockade in solid organ and islet xenotransplantation”. J Immunol Res. 2018;2018:6343608, 2 pages. https://doi.org/10.1155/2018/6343608.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gonzalez PA, et al. Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse. Clin Dev Immunol. 2013;2013:450291, 19 pages.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  CAS  Google Scholar 

  124. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Corrie P. Immune checkpoint inhibitors: a new class of anticancer drug. Prescriber. 2016;27:23.

    Article  Google Scholar 

  129. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bergmann-Leitner E, Leitner W. Adjuvants in the driver’s seat: how magnitude, type, fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccine. 2014;2:252–96. https://doi.org/10.3390/vaccines2020252.

    Article  CAS  Google Scholar 

  131. Cekic C, Casella CR, Eaves CA, Matsuzawa A, Ichijo H, Mitchell TC. Selective activation of the p38 MAPK pathway by synthetic monophosphoryl lipid A. J Biol Chem. 2009;284:31982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Groot AS, et al. Immune camouflage: relevance to vaccines and human immunology. Hum Vaccin Imunother. 2014;10(12):3570–5.

    Article  Google Scholar 

  133. Wilks J, et al. Mammalian lipopolysaccharide receptors incorporated into the retroviral envelope augment virus transmission. Cell Host Microbe. 2015;18:456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Levy R, et al. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory interaction. PNAS. 2016;113(42):E6437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schreiber HA, Hulseberg PD, Lee J, Prechl J, Barta P, et al. Dendritic cells in chronic myco-bacterial granulomas restrict local anti-bacterial T cell response in a murine model. PLoS One. 2010;5:e11453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bonato VL, Medeiros AI, Lima VM, Dias AR, Faccioliti LH, et al. Downmodulation of CD18 and CD86 on macrophages and VLA-4 on lymphocytes in experimental tuberculosis. Scand J Immunol. 2001;54:564–73.

    Article  CAS  PubMed  Google Scholar 

  137. Khan N, et al. Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!! PLoS Pathog. 2012;8(6):e1002676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Anderson KM, Czinn SJ, Redline RW, Blanchard TG. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. J Immunol. 2006;176:5306–13.

    Article  CAS  PubMed  Google Scholar 

  139. Yao T, Mecsas J, Healy JI, Falkow S, Chien Y. Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J Exp Med. 1999;190:1343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pryjma J, Baran J, Ernst M, Woloszyn M, Flad HD. Altered antigenpresenting capacity of human monocytes after phagocytosis of bacteria. Infect Immun. 1994;62:1961–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wyant TL, Tanner MK, Sztein MB. Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells. Infect Immun. 1999;67:1338–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol. 2006;176:3000–9.

    Article  CAS  PubMed  Google Scholar 

  143. Agrewala JN, Kumar B, Vohra H. Potential role of B7-1 and CD28 molecules in immunosuppression in leprosy. Clin Exp Immunol. 1998;111:56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhatt K, Uzelac A, Mathur S, McBride A, Potian J, et al. B7 costimulation is critical for host control of chronic Mycobacterium tuberculosis infection. J Immunol. 2009;182:3793–800.

    Article  CAS  PubMed  Google Scholar 

  145. Kornbluth RS. An expanding role for CD40L and other tumor necrosis factor superfamily ligands in HIV infection. J Hematother Stem Cell Res. 2002;11:787–801.

    Article  CAS  PubMed  Google Scholar 

  146. Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL. HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood. 2004;104:2810–7.

    Article  PubMed  CAS  Google Scholar 

  147. Servet-Delprat C, Vidalain PO, Bausinger H, Manie S, Le Deist F, et al. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol. 2000;164:1753–60.

    Article  CAS  PubMed  Google Scholar 

  148. Salio M, Cella M, Suter M, Lanzavecchia A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol. 1999;29:3245–53.

    Article  CAS  PubMed  Google Scholar 

  149. Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood. 2001;97:3171–6.

    Article  CAS  PubMed  Google Scholar 

  150. Coscoy L, Ganem D. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J Clin Invest. 2001;107:1599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wagner EK, Maynard JA. Engineering therapeutic antibodies to combat infectious diseases. Curr Opin Chem Eng. 2018;19:131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pasquale A, et al. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccine. 2015;3:320–43.

    Article  CAS  Google Scholar 

  153. Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods. 1999;19:103–7, Article ID meth.1999.0834.

    Article  CAS  PubMed  Google Scholar 

  154. Han Y, et al. Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides. Mar Drugs. 2013;11:363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brodin P. Life-saving degeneracy in the human immune system. Cell Host Microbe. 2017;21:309.

    Article  CAS  PubMed  Google Scholar 

  156. Munford RS. Murine responses to endotoxin: another dirty little secret? J Infect Dis. 2010;201(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  157. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11:21–7.

    Article  CAS  PubMed  Google Scholar 

  158. Marsland BJ, Kopf M. Toll-like receptors: paving the path to T cell-driven autoimmunity? Curr Op Immunol. 2007;19:611–4.

    Article  CAS  Google Scholar 

  159. Crampton SP, Voynova E, Bolland S. Innate pathways to B cell activation and tolerance. Ann N Y Acad Sci. 2010;1183:58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ryan MH, Heavner GA, Brigham-Burke M, McMahon F, Shanahan MF, et al. An in vivo model to assess factors that may stimulate the generation of an immune reaction to erythropoietin. Int Immunopharmacol. 2006;6:647–55.

    Article  CAS  PubMed  Google Scholar 

  161. Wen D, Boissel JP, Tracy TE, Gruninger RH, Mulcahy LS, et al. Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood. 1993;82:1507–16.

    CAS  PubMed  Google Scholar 

  162. Schwarz H, et al. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS One. 2014;9(12):e113840.. Published online 5 Dec 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Peters M, Fritz P, Bufe A. A bioassay for determination of lipopolysaccharide in environmental samples. Innate Immun. 2012;18:694–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Williams .

Editor information

Editors and Affiliations

Appendices

Milestone Publications in Bridging Innate and Adaptive Immunity

Listed here are some landmark papers of interest that revolve around the discovery of the connectedness of mammalian innate and adaptive immune responses.

The first presentation of the idea of non-clonal recognition in lymphocyte activation.

  • Immune activation of B cells: evidence for ‘one nonspecific triggering signal’ not delivered by the Ig receptors, Coutinho, A. & Moller, G., Scand. J. Immunol. 3, 133–146 (1974)

Conceptualization of “pattern recognition receptors” in the detection of PAMPs

  • Approaching the asymptote? Evolution and revolution in immunology, Janeway, C. A. Jr., Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989)

Discovery of first human TLR (TLR4) and activation of TLR4 to induce expression of cytokines and costimulatory molecules (B7.1) thus linking innate and adaptive immunity.

  • A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr., Nature 388, 394–397 (1997)

Three papers contributing to the initial discovery of LPS as TLR4 activating ligand.

  • Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B. & Beutler, B., Science 282, 2085–2088 (1998)

  • Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4), Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P. & Malo, D., J. Exp. Med. 189, 615–625 (1999)

  • Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. & Akira, S., J. Immunol. 162, 3749–3752 (1999)

Demonstration of TLR gene polymorphism as influencer of human physiologic response.

  • TLR4 mutations are associated with endotoxin hyporesponsiveness in humans, Arbour, N. C., Lorenz, E., Schutte, B. C., Zabner, J., Kline, J. N., Jones, M., Frees, K, Watt, J. L. & Schwartz, D. A., Nat. Genet. 25, 187–191 (2000)

Demonstration of critical function for TLRs in immune cell maturation and induction of adaptive immune responses.

  • Toll-like receptors control activation of adaptive immune responses, Schnare, M., Barton, G. M., Holt, A. C., Takeda, K., Akira, S. & Medzhitov, R., Nat. Immunol. 2, 947 (2001).

Demonstration that immunoglobulin G2a-chromatin immune complexes synergistically engage antigen receptor and TLR9 to lead to antibody production.

  • Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J. & Marshak-Rothstein, A., Nature 416, 603–607 (2002)

Determination of crystal structure of bound ligands (LPS PAMPs) in TLR4 complex activation

  • Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran, Ho Min Kim, Beom Seok Park, Jung-In Kim, Sung Eun Kim, Judong Lee, Se Cheol Oh, Purevjav Enkhbayar, Norio Matsushima, Hayyoung Lee, Ook Joon Yoo, and Jie-Oh Lee, October 2007, Cell 130(5):906–17

Appendix I

Foretelling of subsequent immune discoveries (Janeway’s 1989), paraphrased for brevity from: Approaching the asymptote: Evolution and Revolution in Immunology, Cold Spring Harb Symp Quant Biol. 1989. 54: 1–13, Janeway, Pillars of Immunology.

a

Infectious agents are highly variable in structure, and their short generation time allows them to alter their structure quickly. This is especially true of their protein structure, which can diversify remarkably even during an infection within an individual…

b

Burnet realized the necessity for the immune system to develop mechanisms to generate an essentially open and unlimited repertoire of receptors, since evolutionary selection could not provide the immune system with receptors that would recognize the hemagglutinin molecules of next year’s strain of virus.

c

…T cell receptors derive from a separate and unique set of rearranging gene segments… these two sets (TCR and BCR) of rearranging genes arose only once and by duplications they diverged…

d

…the ability to deliver the second signal is induced on host APCs by infectious agents as the result of a distinct type of immunological recognition specific for microorganisms, but not resulting from clonally distributed receptors.

e

I raise the possibility that the second signals arose prior to the development of specific antigen recognition. Under this construction, second signals may be viewed more as positive initiators of immunity than as late adaptations to avoid autoimmunity.

f

Why do we need to use adjuvants? …it seems likely that these substances are required to provide two attributes not found in soluble proteins. The first is effective antigen uptake into macrophages, thus increasing ligand density in the form of peptides derived from the foreign protein bound to class I MHC molecules. The second is the provision of costimulatory activity, induced in macrophages and/or B cells by the bacterial constituent of the adjuvant.

g

If effector mechanisms used by lymphocytes in contemporary vertebrate immune systems derived from primitive immune systems lacking the rearranging receptor gene families that allow for clonal selection, how was effector function regulated in primitive organisms? The most likely possibility is that primitive effector cells bear receptors that allow recognition of certain pathogen-associated molecular patterns (PAMPs) that are not found in the host. I term these receptors pattern recognition receptors.

h

I argue that PAMPs are still an important part of vertebrate immune systems… I propose that these pattern recognition systems activated effector functions of primitive immune systems prior to the development of rearranging gene families and continue to play a role in host defense today.

i

What kinds of ligands or patterns should such non-clonally distributed receptors recognize? I think it likely that such receptors will recognize general structural patterns in molecules found in many microorganisms, but not in the multicellular organisms… The pattern recognized should be the product of a complex and critical enzymology in the microorganism. Complex cell wall carbohydrates or LPS are likely ligands.

j

The well-known responses of B cells to polyclonal B-cell activators (also called mitogens), such as LPS, presumably represent the action of non-clonally distributed pattern recognition receptors on the B cell.

k

…lymphocyte-activating signals derived from other host cells, evolved prior to the development of rearranging receptor genes. The substances that trigger second-signal expression, such as LPS, do so very rapidly and do not require recognition by rearranging, clonally distributed receptors… Such receptors must be distributed non-clonally on all APCs.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, K.L. (2019). Emerging Immune Context. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_7

Download citation

Publish with us

Policies and ethics