Skip to main content

Complex Structure but Simple Function in Microbial Mats from Antarctic Lakes

  • Chapter
  • First Online:

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 7))

Abstract

Microbial mats growing under the permanent ice cover of Antarctic lakes occupy an exceptionally low-disturbance regime. Constant temperature, the absence of bioturbation or physical disturbance from wind action or ice formation allow mats to accumulate, as annual growth layers, over many decades or even centuries. In so doing they often assume decimetre scale, three-dimensional morphologies such as elaborate pinnacle structures and conical mounds. Here we combine existing and new information to describe microbial structures in three Antarctic lakes—simple prostrate mats in Lake Hoare, emergent cones in Lake Untersee and elaborate pinnacles in Lake Vanda. We attempt to determine whether structures emerge simply from uncoordinated organism-environment interactions or whether they represent an example of “emergent complexity”, within which some degree of self-organisation occurs to confer a holistic functional advantage to component organisms. While some holistic advantages were evident from the structures—the increase in surface area allows greater biomass and overall productivity and nutrient exchange with overlying water—the structures could also be understood in terms of potential interactions between individuals, their orientation and their environment. The data lack strong evidence of coordinated behaviour directed towards holistic advantages to the structure, though hints of coordinated behaviour are present as non-random distributions of structural elements. The great size of microbial structures in Antarctic lakes, and their relatively simple community composition, makes them excellent models for more focused research on microbial cooperation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen DT, Sumner DY, Hawes I, Webster-Brown J, McKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293

    Article  CAS  Google Scholar 

  • Battin TJ, Sloan WT, Kjellberg S, Damis H, Head IM, Curtis TO, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  CAS  Google Scholar 

  • Bosak T, Liang B, Wu T-D, Templer SP, Evans A, Vali H, Guerquin-Kern J-L, Klepac-Ceraj V, Sim MS, Mui J (2012) Cyanobacterial diversity and activity in modern conical microbialites. Geobiology 10:384–401

    Article  CAS  Google Scholar 

  • Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44

    Article  CAS  Google Scholar 

  • Cathey DD, Parker BC, Simmons GM, Yongue WH, Van Brunt MR (1981) The microfauna od algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia 85:3–15

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Corning PA (2002) The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7:18–30

    Article  Google Scholar 

  • Dana GL, Wharton RR, Dubayah R (1998) Solar radiation in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC, pp 38–64

    Google Scholar 

  • De Wolf T, Holvoet T (2005) Emergence versus self-organisation: different concepts but promising when combined. In: Brueckner S, Di Marzo Serugendo G, Karegeoros A, Nagpal R (eds) Engineering self organising systems: methodologies and applications. lecture notes in computer science. Springer, Berlin, pp 1–15

    Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  CAS  Google Scholar 

  • Denis L, Gevaert F, Spilmont N (2012) Microphytobenthic production estimated by in situ oxygen microprofiling: short-term dynamics and carbon budget implications. J Soils Sediments 12:1517–1529

    Article  CAS  Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. Adv Microb Ecol 14:251–274

    Article  CAS  Google Scholar 

  • Doran PT, Wharton RA, Lyons WB (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleoliomnol 10:85–114

    Article  CAS  Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Welsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520

    Article  CAS  Google Scholar 

  • Fenchel T (1998) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat Microb Ecol 14:235–240

    Article  Google Scholar 

  • Franks J, Stolz JF (2009) Flat laminated microbial mat communities. Earth Sci Rev 96:163–172

    Article  CAS  Google Scholar 

  • Ghisalberti M, Gold DA, Laflamme M, Clapham ME, Narbonne GM, Summons RE, Johnston DT, Jacobs DK (2014) Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Curr Biol 24:305–309

    Article  CAS  Google Scholar 

  • Guerrero R, Berlanga M (2007) The hidden side of the prokaryote cell: rediscovering the microbial world. Int Microbiol 10:157–168

    CAS  PubMed  Google Scholar 

  • Haendel D, Kaup E, Loopman A, Wand U (1995) Physical and hydrochemical properties of water bodies. In: Bormann O, Fritzsche D (eds) The Schirmacher Oasis, Queen Maud Land, East Antarctica, and its surroundings. PGM Ergh 289. Perthes, Gotha, pp 259–319

    Google Scholar 

  • Halley JD, Winkler DA (2008) Classification of emergence and its relation to self-organization. Complexity 13:10–15

    Article  Google Scholar 

  • Hawes I, Schwarz A-M (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J Phycol 35:448–459

    Article  CAS  Google Scholar 

  • Hawes I, Schwarz A-M (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15

    Article  CAS  Google Scholar 

  • Hawes I, Schwarz A-M, Smith R, Howard-Williams C (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 11:198–208

    Article  Google Scholar 

  • Hawes I, Moorhead D, Sutherland D, Schmeling J, Schwarz A-M (2001) Benthic primary production in two perennially ice-covered Antarctic lakes: patterns of biomass accumulation with a model of community metabolism. Antarct Sci 13:18–27

    Article  Google Scholar 

  • Hawes I, Sumner DY, Andersen DT, Mackey TJ (2011) Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice covered, Antarctic lake. Geobiology 9:394–410

    Article  CAS  Google Scholar 

  • Hawes I, Sumner D, Andersen D, Jungblut A, Mackey T (2013) Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2:151–176

    Article  Google Scholar 

  • Hawes I, Giles H, Doran PT (2014) Estimating photosynthetic activity in microbial mats in an ice-covered Antarctic lake using automated oxygen microelectrode profiling and variable chlorophyll fluorescence. Limnol Oceanogr 59:674–688

    Article  CAS  Google Scholar 

  • Hawes I, Jungblut AD, Obryk MK, Doran PT (2016) Growth dynamics of laminated microbial mats in response to variable irradiance in an Antarctic lake. Freshw Biol 61:396–410

    Article  Google Scholar 

  • Howard-Williams C, Pridmore RD, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131

    Article  Google Scholar 

  • Howard-Williams C, Schwarz A-M, Hawes I (1998) Optical properties of the McMurdo Dry Valley Lakes, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC, pp 189–205

    Google Scholar 

  • Jungblut AD, Wood S, Hawes I, Webster-Brown J, Harris C (2012) The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microb Ecol 82:356–366

    Article  CAS  Google Scholar 

  • Karanovic T, Gibson J, Hawes I, Andersen D, Stevens M (2014) Three new species of Diacyclops (Copepods: Cyclopoida) from continental Antarctica. Antarct Sci 26:250–260

    Article  Google Scholar 

  • Kaup E, Loopman A, Klokov V, Simonov I, Haendel D (1988) Limnological investigations in the Untersee Oasis during the summer season 1983/84. In: Martin J (ed) Limnological studies in Queen Maud Land. Academy of Sciences, Tallinn, Estonia, pp 43–56

    Google Scholar 

  • Kühl M, Fenchel T (2000) Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial Cyanobacterial mat. Microb Ecol 40:94–103

    PubMed  Google Scholar 

  • Lizotte MP, Priscu JC (1992) Photosynthesis-irradiance relationships in phytoplankton from the physically stable water column of a perennially ice-covered lake (Lake Bonney, Antarctica). J Phycol 28:179–185

    Article  Google Scholar 

  • Love FG, Simmons GM, Parker BC, Wharton RA, Seaburg KG (1983) Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiol J 3:33–48

    Article  Google Scholar 

  • Mackey TJ, Sumner DY, Hawes I, Jungblut A, Andersen DT (2015) Branched columnar stromatolites in Lake Joyce. Antarct Geobiol 13:373–390

    Article  CAS  Google Scholar 

  • Nadell D, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600

    Article  CAS  Google Scholar 

  • Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50:262–279

    Article  Google Scholar 

  • Ng WO, Grossman AR, Bhaya D (2003) Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803. J Bacteriol 185:1599–1607

    Article  CAS  Google Scholar 

  • Oren A (2010) Mats of filamentous and unicellular cyanobacteria in hypersaline environments. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp 387–400

    Chapter  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  CAS  Google Scholar 

  • Parker BC, Simmons GM, Love FG, Wharton RA, Seaburg KG (1981) Modern stromatolites in Antarctic Dry Valley lakes. Bioscience 31:656–661

    Article  Google Scholar 

  • Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical stromatolites. Proc Natl Acad Sci 107:9956–9961

    Article  CAS  Google Scholar 

  • Petroff AP, Beukes NJ, Rothamn DH, Bosak T (2013) Biofilm growth and fossil form. Phys Rev. https://doi.org/10.1103/PhysRevX.3.041012

  • Quesada A, Fernández-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers–Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford, pp 179–196

    Chapter  Google Scholar 

  • Ragotzkie RA, Likens GE (1964) The heat balance of two Antarctic lakes. Limnol Oceanogr 9:412–425

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Beboutk BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  CAS  Google Scholar 

  • Reyes K, Gonzalez NI, Stewart J, Ospino F, Nguyen D, Cho DT, Ghahremani N, Spear JR, Johnson HA (2013) Surface orientation affects the direction of cone growth by Leptolyngbya sp. strain C1, a likely architect of coniform structures Octopus Spring (Yellowstone National Park). Appl Environ Microbiol 79:1302–1308

    Article  CAS  Google Scholar 

  • Seckbach J, Oren A (2010) Microbial mats: modern and ancient microorganisms in stratified systems. Cellular origin, life in extreme habitats and Astrobiology 14. Springer

    Google Scholar 

  • Shepard RN, Sumner DY (2010) Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8:179–190

    Article  CAS  Google Scholar 

  • Spigel RH, Priscu JC (1998) Physical limnology of the mcmurdo dry valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a Polar desert: the mcmurdo dry valleys, Antarctica. AGU, Washington, DC, pp 153–189

    Google Scholar 

  • Stahl LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  Google Scholar 

  • Stahl LJ, Bolhuis H, Cretoiu MM (2018) Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ Microbiol. https://doi.org/10.1111/1462-2920.1449

  • Sumner DY, Jungblut A-D, Hawes I, Andersen DT, Mackey TJ, Wall K (2016) Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology 14(6):559–574. https://doi.org/10.1111/gbi.12188

    Article  Google Scholar 

  • Sutherland DL, Hawes I (2009) Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake. FEMS Microb Ecol 67:279–292

    Article  CAS  Google Scholar 

  • Tice MM, Thornton DCO, Pope MC, Olszewski TD, Gong J (2011) Archean microbial mat communities. Annu Rev Earth Planet Sci 39:297–319

    Article  CAS  Google Scholar 

  • Tyler SW, Cook PG, Butt AZ, Thomas JM, Doran PT, Lyons WB (1998) Evidence of deep circulation in two deep perennially ice-covered Antarctic Lakes. Limnol Oceanogr 43:625–635

    Article  CAS  Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in polar regions. In: Whitton BD, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF, Vincent CL (1982) Factors controlling phytoplankton production in Lake Vanda (77°S). Can J Fish Aquat Sci 39:1602–1609

    Article  Google Scholar 

  • Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812

    Article  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Distribution and structure of recent stromatolitic algal mats. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 273–310

    Chapter  Google Scholar 

  • Wand U, Schwarz G, Brüggemann E, Aüuer K (1997) Evidence for physical and chemical stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarct Sci 9:43–45

    Article  Google Scholar 

  • Wand U, Samarkin V, Nitzsche H, Hubberten H (2006) Biogeochemistry of methane in the permanently ice-covered Lake UNtersee, central Dronning Maud Land, East Antarctica. Limnol Oceanogr 51:1180–1194

    Article  CAS  Google Scholar 

  • Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585

    Article  CAS  Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365

    Article  Google Scholar 

  • Wharton RA Jr, McKay CP, Clow GD, Andersen DT (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic research series. American Geophysical Union, Washington, DC, pp 53–70

    Chapter  Google Scholar 

  • Wharton RA Jr (1994) Stromatolitic mats in Antarctic lakes. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 53–70

    Chapter  Google Scholar 

  • Wharton RA Jr, Simmons GM, McKay CP (1989) Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation. Hydrobiologia 172:305–320

    Article  CAS  Google Scholar 

  • Wharton RA Jr, McKay CP, Clow GD, Andersen DT, Simmons GM, Love FG (1992) Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: implications for local climate change. J Geophys Res 97:3503–3513

    Article  Google Scholar 

  • Zhang L, Jungblut AD, Hawes I, Andersen DT, Sumner DY, Mackey TJ (2015) Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley Lakes, Antarctica. Polar Biol 38:1097–1110

    Article  Google Scholar 

Download references

Acknowledgments

The information presented in this contribution is derived from field and laboratory work that would have been impossible without the support of many people and organisations. Logistic support was provided by Antarctica New Zealand, the US Antarctic Program and Antarctic Logistics Centre International. We thank all of our Antarctic field colleagues, in particular Drs Dale Andersen and Tyler Mackey, without whom the underwater research would not have been possible. We also thank the reviewers and editors for helpful comments and hard work to see the volume to production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Hawes .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This study was funded by NASA Astrobiology: Exobiology and Evolutionary Biology (NNX08AO19G and NN13AE77A), the New Zealand Ministry of Business Innovation and Employment (CO1605 and UOWX1401), the National Science Foundation (MCM-LTER grant number 1115245) and the Tawani Foundation.

Conflict of Interest

Ian Hawes declares that he has no conflict of interest. Dawn Sumner declares that she has no conflict of interest. Anne D. Jungblut declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawes, I., Sumner, D., Jungblut, A.D. (2019). Complex Structure but Simple Function in Microbial Mats from Antarctic Lakes. In: Hurst, C. (eds) The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-16775-2_4

Download citation

Publish with us

Policies and ethics