Skip to main content

Carrion Availability in Space and Time

  • Chapter
  • First Online:
Book cover Carrion Ecology and Management

Abstract

Although carrion ecology has received a great deal of scientific attention in recent years, carrion supply is still poorly described in most ecosystems. Animals die from many causes and their carcasses are exploited by a wide array of scavengers and decomposers. In terrestrial ecosystems, carrion is produced naturally at an annual rate of tens to hundreds of kg/km2, although this figure may increase by several orders of magnitude in areas where living animals are concentrated, such as coastal ecosystems with important marine mammal colonies and the breeding grounds of semelparous fish. Mortality rates, cause of death, and species and individual identity of carcasses greatly influence how much carrion is available to scavengers. For instance, in populations characterized by a stationary age distribution, terrestrial megaherbivores, marine mammals, and other large animals contribute substantially to the total carrion biomass production in their ecosystems. After carcasses are produced, other factors such as carcass location, weather conditions, and biotic interactions may influence their availability to scavengers. Overall, the spatiotemporal variation in carrion availability is inevitably linked to the distribution of animals and the places and periods where they are more vulnerable to mortality. Also, although carcasses in terrestrial ecosystems are rarely moved during their consumption, carcasses in aquatic ecosystems frequently sink, float, or follow the currents. In relation to time, carrion production may experience strong fluctuations both within and between years. The growing field of carrion ecology, including the evolution of scavenging behaviour and carrion management, would benefit greatly from a better understanding of how much, where, and when carrion is produced and becomes available to scavengers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson WB, Polis GA (1998) Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes. Oikos 81:75–80

    Article  Google Scholar 

  • Arbelo M, de los Monteros AE, Herráez P et al (2013) Pathology and causes of death of stranded cetaceans in the Canary Islands (1999-2005). Dis Aquat Org 103:87–99

    Article  Google Scholar 

  • Attwell RIG (1963) Some observations on feeding habits, behaviour and inter-relationships of Northern Rhodesian vultures. Ostrich 34:235–247

    Article  Google Scholar 

  • Bailey DM, Priede IG (2002) Predicting fish behaviour in response to abyssal food-falls. Mar Biol 141:831–840

    Article  Google Scholar 

  • Barber-Meyer SM, Mech LD, White PJ (2008) Elk calf survival and mortality following wolf restoration to Yellowstone National Park. Wildl Monogr 169:1–30

    Article  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB et al (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772

    PubMed  Google Scholar 

  • Beasley JC, Olson ZH, DeVault TL (2012) Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121:1021–1026

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from Individuals to ecosystems, 4th edn. Blackwell Publishing, Malden

    Google Scholar 

  • Benbow ME, Tomberlin JK, Tarone AM (2016) Carrion ecology, evolution, and their applications. CRC Press, New York

    Google Scholar 

  • Bennett BA, Smith CR, Glaser B et al (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223

    Article  Google Scholar 

  • Bennetts RE, McClelland BR (1991) Differences in the distribution of adult and immature bald eagles at an autumn concentration in Montana. Northwest Sci 65:223–230

    Google Scholar 

  • Birch LC (1957) The meanings of competition. Am Nat 91:5–18

    Article  Google Scholar 

  • Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol 32:369–434

    Google Scholar 

  • Brown LH, Watson A (1964) The golden eagle in relation to its food supply. Ibis 106:78–100

    Article  Google Scholar 

  • Bump JK, Tischler KB, Schrank AJ et al (2009) Large herbivores and aquatic–terrestrial links in southern boreal forests. J Anim Ecol 78:338–345

    Article  PubMed  Google Scholar 

  • Burkepile DE, Parker JD, Woodson CB et al (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831

    Article  PubMed  Google Scholar 

  • Burkholder JM, Noga EJ, Hobbs CH et al (1992) New “phantom” dinoflagellate is the causative agent of major estuarine fish kills. Nature 358:407–410

    Article  CAS  PubMed  Google Scholar 

  • Butler JRA, du Toit JT (2002) Diet of free-ranging domestic dogs (Canis familiaris) in rural Zimbabwe: implications for wild scavengers on the periphery of wildlife reserves. Anim Conserv 5:29–37

    Article  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Cederholm C, Kunze MD, Murota T et al (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24:6–15

    Article  Google Scholar 

  • Clua EE, Manire CA, Garrigue C (2014) Biological data of pygmy killer whale (Feresa attenuata) from a mass stranding in New Caledonia (South Pacific) associated with hurricane Jim in 2006. Aquat Mamm 40:162–172

    Article  Google Scholar 

  • Collins C, Kays R (2011) Causes of mortality in North American populations of large and medium-sized mammals. Anim Conserv 14:474–483

    Article  Google Scholar 

  • Conover MR, Dinkins JB, Haney MJ (2013) Impacts of weather and accidents on wildlife. In: Wildlife management and conservation: contemporary principles and practices. Johns Hopkins University Press, Baltimore, pp 144–155

    Google Scholar 

  • Conybeare A, Haynes G (1984) Observations on elephant mortality and bones in water holes. Quat Res 22:189–200

    Article  Google Scholar 

  • Cortés-Avizanda A, Jovani R, Carrete M et al (2012) Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: a field experiment. Ecology 93:2570–2579

    Article  PubMed  Google Scholar 

  • Cortés-Avizanda A, Jovani R, Donázar JA et al (2014) Birds sky networks: how do avian scavengers search for carrion resource. Ecology 95:1799–1808

    Article  PubMed  Google Scholar 

  • Cowles RB, Phelan RL (1958) Olfaction in rattlesnakes. Copeia 1958:77–83

    Article  Google Scholar 

  • Cox P, Smith RH (1992) Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behavior. Proc Vertebr Pest Conf 15:165–170

    Google Scholar 

  • Darimont CT, Reimchen TE, Paquet PC (2003) Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Can J Zool 81:349–353

    Article  Google Scholar 

  • DeVault TL, Krochmal AR (2002) Scavenging by snakes: an examination of the literature. Herpetologica 58:429–436

    Article  Google Scholar 

  • DeVault TL, Rhodes OE Jr, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Google Scholar 

  • DeVault TL, Brisbin IL Jr, Rhodes OE Jr (2004) Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool 82:502–509

    Article  Google Scholar 

  • Donázar JA, Margalida A, Carrete M et al (2009) Too sanitary for vultures. Science 326:664

    Article  PubMed  Google Scholar 

  • Drazen JC, Bailey DM, Ruhl HA et al (2012) The role of carrion supply in the abundance of deep-water fish off California. PLoS One 7:e49332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop KM, Barnes DKA, Bailey DM (2014) Variation of scavenger richness and abundance between sites of high and low iceberg scour frequency in Ryder Bay, West Antarctic Peninsula. Polar Biol 37:1741–1754

    Article  Google Scholar 

  • Elbroch LM, Wittmer HU (2012) Table scraps: inter-trophic food provisioning by pumas. Biol Lett 8:776–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans K, Thresher R, Warneke RM et al (2005) Periodic variability in cetacean strandings: links to large-scale climate events. Biol Lett 1:147–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field RD, Reynolds JD (2013) Ecological links between salmon, large carnivore predation, and scavenging birds. J Avian Biol 44:9–16

    Article  Google Scholar 

  • Fisher I, Pain DJ, Thomas VA (2006) Review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv 131:421–432

    Article  Google Scholar 

  • FitzGibbon CD (1990) Why do hunting cheetahs prefer male gazelles? Anim Behav 40:837–845

    Article  Google Scholar 

  • Fjellheim A, Raddum GG (1990) Acid precipitation: biological monitoring of streams and lakes. Sci Total Environ 96:57–66

    Article  CAS  Google Scholar 

  • Geluso KN, Altenbach JS, Wilson DE (1976) Bat mortality: pesticide poisoning and migratory stress. Science 194:184–186

    Article  CAS  PubMed  Google Scholar 

  • Gende SM, Edwards RT, Willson MF et al (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928

    Article  Google Scholar 

  • Gese EM, Ruff RL, Crabtree RL (1996) Foraging ecology of coyotes Canis latrans: the influence of extrinsic factors and a dominance hierarchy. Can J Zool 74:769–783

    Article  Google Scholar 

  • Ghalambor CK, Martin TE (2002) Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. Behav Ecol 13:101–108

    Article  Google Scholar 

  • Glover AG, Higgs ND, Bagley PM et al (2010) A live video observatory reveals temporal processes at a shelf-depth whale-fall. Cah Biol Mar 51:375–381

    Google Scholar 

  • Greig DJ, Gulland FMD, Kreuder C (2005) A decade of live California sea lion (Zalophus californianus) strandings along the central California coast: causes and trends, 1991-2000. Aquat Mamm 31:11–22

    Article  Google Scholar 

  • Gulland FMD (2006) Review of the marine mammal unusual mortality event response program of the National Marine Fisheries Service. U.S. Dept. of Commerce, NOAA Tech. Memo, NMFS-OPR-33

    Google Scholar 

  • Hall AJ, Connell BJM, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life history strategy. J Anim Ecol 70:138–149

    Article  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases-climate links and anthropogenic factors. Science 285:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Heithaus MR, Wirsing AJ, Thomson JA et al (2008) A review of lethal and non-lethal effects of predators on adult marine turtles. J Exp Mar Biol Ecol 356:43–51

    Article  Google Scholar 

  • Hewson R (1995) Use of salmonid carcasses by vertebrate scavengers. J Zool 235:53–65

    Article  Google Scholar 

  • Hoag H (2003) Atlantic cod meet icy death. Nature 422:792

    Article  CAS  PubMed  Google Scholar 

  • Hocking MD, Reimchen TE (2009) Salmon species, density and watershed size predict magnitude of marine enrichment in riparian food webs. Oikos 118:1307–1318

    Article  Google Scholar 

  • Houston DC (1974) The role of griffon vultures Gyps africanus and Gyps ruppellii as scavengers. J Zool 172:35–46

    Article  Google Scholar 

  • Houston DC (1979) The adaptation of scavengers. In: Sinclair ARE, Griffiths N (eds) Serengeti, dynamics of an ecosystem. University of Chicago Press, Chicago, pp 263–286

    Google Scholar 

  • Houston DC (1985) Evolutionary ecology of afrotropical and neotropical vultures in forests. In: Buckley PA, Foster MS, Morton ES et al (eds) Neotropical ornithology. The American Ornithologists Union, Washington, DC, pp 856–864

    Google Scholar 

  • Houston DC (1988) Competition for food between neotropical vultures in forest. Ibis 130:402–417

    Article  Google Scholar 

  • Howald GR, Mineau P, Elliott JE et al (1999) Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8:431–447

    Article  CAS  Google Scholar 

  • Hunter JS, Durant SM, Caro TM (2006) Patterns of scavenger arrival at cheetah kills in Serengeti National Park, Tanzania. Afr J Ecol 45:275–281

    Article  Google Scholar 

  • Husseman JS, Murray DL, Power G et al (2003) Assessing differential prey selection between two sympatric large carnivores. Oikos 101:591–601

    Article  Google Scholar 

  • Isaacs JD, Schwartzlose RA (1975) Active animals of the deep-sea floor. Sci Am 233:85–91

    Article  Google Scholar 

  • Janzen D (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Jepson PD, Deaville R, Acevedo-Whitehouse K et al (2013) What caused the UK’s largest common dolphin (Delphinus delphis) mass stranding event? PLoS One 8:e60953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane A, Jackson AL, Ogada DL et al (2014) Vultures acquire information on carcass location from scavenging eagles. Proc R Soc B 281:20141072

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendall C (2013) Alternative strategies in avian scavengers: how subordinate species foil de despotic distribution. Behav Ecol Sociobiol 67:383–393

    Article  Google Scholar 

  • Kendall C, Virani MZ, Kirui P et al (2012) Mechanisms of coexistence in vultures: understanding de patterns of vulture abundance at carcasses in Masai Mara National Reserve, Kenya. Condor 114:523–531

    Article  Google Scholar 

  • Kendall CJ, Virani MZ, Hopcraft JGC et al (2014) African vultures don’t follow migratory herds: scavenger habitat use is not mediated by prey abundance. PLoS One 9:e83470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch V, Peckham H, Mancini A et al (2013) Estimating at-sea mortality of marine turtles from stranding frequencies and drifter experiments. PLoS One 8:e56776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama A, Kavanagh K, Robinson A (2005) Marine nitrogen in central Idaho riparian forests: evidence from stable isotopes. Can J Fish Aquat Sci 62:518–526

    Article  CAS  Google Scholar 

  • Kruuk H (1967) Competition for food between vultures in East Africa. Ardea 55:171–193

    Google Scholar 

  • Kruuk H (1972) The spotted Hyena. A study of predation and social behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Kühn S, Bravo-Rebolledo EL, Van Franeker JA (2015) Deleterious effects of litter on marine life. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 75–116

    Chapter  Google Scholar 

  • Laist DW, Knowlton AR, Mead JG et al (2001) Collisions between ships and whales. Mar Mamm Sci 17:35–75

    Article  Google Scholar 

  • Lambertucci SA, Speziale KL, Rogers TE et al (2009) How do roads affect the habitat use of an assemblage of scavenging raptors? Biodivers Conserv 18:2063–2074

    Article  Google Scholar 

  • Lambertucci SA, Donazar JA, Hiraldo F (2010) Poisoning people and wildlife with lead ammunition: time to stop. Environ Sci Technol 44:7759–7760

    Article  CAS  PubMed  Google Scholar 

  • Le Boeuf BJ, Pérez-Cortés M, Urban J et al (2000) High gray whale mortality and low recruitment in 1999: potential causes and implications. J Cetacean Res Manag 2:85–99

    Google Scholar 

  • Margalida A, Donázar JA, Carrete M et al (2010) Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. J Appl Ecol 47:931–935

    Article  Google Scholar 

  • Margalida A, Colomer MA, Sanuy D (2011) Can wild ungulate carcasses provide enough biomass to maintain avian scavenger populations? An empirical assessment using a bio-inspired computational model. PLoS One 6:e20248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh R, Petrie B, Weidman CR et al (1999) The 1882 tilefish kill - a cold event in shelf waters off the North-Eastern United States? Fish Oceanogr 8:39–49

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP (2010) When hunting benefits raptors: a case study of game species and vultures. Eur J Wildl Res 56:519–528

    Article  Google Scholar 

  • Mattisson J, Andrén H, Persson J, Segerström P (2011) Influence of intraguild interactions on resource use by wolverines and Eurasian lynx. J Mammal 92:1321–1330

    Article  Google Scholar 

  • Mduma SAR, Sinclair ARE, Hilborn R (1999) Food regulates the Serengeti wildebeest: a 40-year record. J Anim Ecol 68:1101–1122

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Selva N et al (2014) Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol Rev 89:1042–1054

    Article  PubMed  Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Sebastián-González E et al (2015) Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124:1391–1403

    Article  Google Scholar 

  • Molinari-Jobin A, Molinari P, Loison A et al (2004) Life cycle period and activity of prey influence their susceptibility to predators. Ecography 27:323–329

    Article  Google Scholar 

  • Møller AP, Erritzøe H, Erritzøe J (2011) A behavioral ecology approach to traffic accidents: interspecific variation in causes of traffic casualties among birds. Zool Res 32:115–127

    Google Scholar 

  • Morales-Reyes Z, Pérez-García JM, Moleón M et al (2017a) Evaluation of the network of protection areas for the feeding of scavengers in Spain: from biodiversity conservation to greenhouse gas emission savings. J Appl Ecol 54:1120–1129

    Article  CAS  Google Scholar 

  • Morales-Reyes Z, Sánchez-Zapata JA, Sebastián-González E, Botella F, Carrete M, Moleón M (2017b) Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Aca Oecol 79:81–88

    Article  Google Scholar 

  • Moreno P, Benke H, Lutter S (1992) Behaviour of Harbour (Phocoena phocoena) carcasses in the German Bight: surfacing rate, decomposition and drift routes. Untersuchungen über Bestand, Gesundheitszustand und Wanderungen der Kleinwalpopulationen (Cetacea) in deutschen Gewässern.–Interim Report, WWF Fachbereich Wattenmeer and Nordseeschutz und Forschungs-und Technologiezentrum Westküste, Aussenstelle der Universität Kiel

    Google Scholar 

  • Moreno-Opo R, Trujillano A, Margalida A (2016) Behavioral coexistence and feeding efficiency drive niche partitioning in European avian scavengers. Behav Ecol 27:1041–1052

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic, London

    Google Scholar 

  • Newton I, Davis PE, Davis JE (1982) Ravens and buzzards in relation to sheep-farming and forestry in Wales. J Appl Ecol 19:681–706

    Article  Google Scholar 

  • Ogada DL, Torchin ME, Kinnaird MF et al (2012) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv Biol 26:453–460

    Article  CAS  PubMed  Google Scholar 

  • Olea PP, Mateo-Tomás P (2009) The role of traditional farming practices in ecosystem conservation: The case of trashumance and vultures. Biol Conserv 142:1844–1853

    Article  Google Scholar 

  • Ono KA, Boness DJ, Oftedal OT (1987) The effect of a natural environmental disturbance on maternal investment and pup behavior in the California sea lion. Behav Ecol Sociobiol 21:109–118

    Article  Google Scholar 

  • Oro D, Genovart M, Tavecchia G et al (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514

    Article  PubMed  Google Scholar 

  • Owen-Smith N (1988) Megaherbivores. The influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Owen-Smith N, Mills MGL (2008) Predator-prey size survival rates in an African large-mammal food web. J Anim Ecol 77:173–183

    Article  PubMed  Google Scholar 

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508

    Article  CAS  PubMed  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub- steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Peltier H, Dabin W, Daniel P et al (2012) The significance of stranding data as indicators of cetacean populations at sea: modelling the drift of cetacean carcasses. Ecol Indic 18:278–290

    Article  Google Scholar 

  • Peltier H, Baagøe HJ, Camphuysen KCJ et al (2013) The stranding anomaly as population indicator: the case of harbour porpoise Phocoena phocoena in North-Western Europe. PLoS One 8:e62180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira LM, Owen-Smith N, Moleón M (2014) Facultative predation and scavenging by mammalian carnivores. Mammal Rev 44:44–55

    Article  Google Scholar 

  • Piatt JF, Van Pelt TI (1997) Mass-mortality of Guillemots (Uria aalge) in the Gulf of Alaska in 1993. Mar Pollut Bull 34:656–662

    Article  CAS  Google Scholar 

  • Polis GA, Hurd SD (1996a) Allochthonous input across habitats, subsidized consumers, and apparent trophic cascades: examples from the ocean-land interface. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, Inc., New York, pp 275–285

    Chapter  Google Scholar 

  • Polis GA, Hurd SD (1996b) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Pringle RM (2017) How large herbivores subsidize aquatic food webs in African savannas. Proc Natl Acad Sci U S A 114:7489–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior KA, Weatherhead PJ (1991) Competition at the carcass: opportunities for social foraging by turkey vultures in southern Ontario. Can J Zool 69:1550–1556

    Article  Google Scholar 

  • Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. Edward Arnold, London

    Google Scholar 

  • Quaggiotto MM, Burke LR, McCafferty DJ et al (2016) First investigation of the consumption of seal carcasses by terrestrial and marine scavengers. Glasgow Nat 26:33–52

    Google Scholar 

  • Quaggiotto MM, Barton PS, Morris CD et al (2018) Seal carrion is a predictable resource for coastal ecosystems. Acta Oecol 88:41–51

    Article  Google Scholar 

  • Quinn TP, Carlson SM, Gende SM et al (2009) Transportation of Pacific salmon carcasses from streams to riparian forests by bears. Can J Zool 87:195–203

    Article  Google Scholar 

  • Ramirez-llodra E, Brandt A, Danovaro R et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Reimchen T (2000) Some ecological and evolutionary aspects of bear-salmon interactions in coastal British Columbia. Can J Zool 78:448–457

    Article  Google Scholar 

  • Reisdorf AG, Bux R, Wyler D et al (2012) Float, explode or sink: postmortem fate of lung-breathing marine vertebrates. Palaeobiol Palaeoenviron 92:67–81

    Article  Google Scholar 

  • Roman J, Estes JA, Morissette L et al (2014) Whales as marine ecosystem engineers. Front Ecol Environ 12:377–385

    Article  Google Scholar 

  • Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007

    Article  Google Scholar 

  • Ruzicka RE, Conover MR (2012) Does weather or site characteristics influence the ability of scavengers to locate food? Ethology 118:187–196

    Article  Google Scholar 

  • Sánchez-Piñero F, Polis G (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81:3117–3132

    Article  Google Scholar 

  • Santos BS, Kaplan DM, Friedrichs MA et al (2018) Consequences of drift and carcass decomposition for estimating sea turtle mortality hotspots. Ecol Indic 84:319–336

    Article  Google Scholar 

  • Savage RJG (1977) Evolution in carnivorous mammals. Palaeontology 20:237–271

    Google Scholar 

  • Schaller GB (1972) The serengeti lion: a study of predator prey relations. University of Chicago Press, Chicago

    Google Scholar 

  • Schoenebeck CW, Brown ML, Chipps SR et al (2012) Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes. Lake Reserv Manage 28:189–199

    Article  CAS  Google Scholar 

  • Scholin CA, Gulland F, Doucette GJ et al (2000) Mortality of sea lions along the central California coastlinked to a toxic diatom bloom. Nature 403:80–84

    Article  CAS  PubMed  Google Scholar 

  • Sebastián-González E, Sánchez-Zapata JA, Donázar JA et al (2013) Interactive effects of obligate scavengers and scavenger community richness on lagomorph carcass consumption patterns. Ibis 155:881–885

    Article  Google Scholar 

  • Sebastián-González E, Moleón M, Gibert JP et al (2016) Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97:95–105

    Article  PubMed  Google Scholar 

  • Selva N (2004) The role of scavenging in the predator community of Białowieża Primeval Forest (Poland). PhD thesis, Univ. de Sevilla, Sevilla

    Google Scholar 

  • Selva N, Jedrzejewska B, Jedrzejewski W et al (2003) Scavenging of European bison carcasses in Białowieża Primeval Forest (eastern Poland). Ecoscience 10:303–311

    Article  Google Scholar 

  • Selva N, Jedrzejewska B, Jedrzejewski W et al (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601

    Article  Google Scholar 

  • Shivik JA (2006) Are vultures birds, and do snakes have venom, because of macro-and microscavenger conflict? Bioscience 56:819–823

    Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP et al (2007) Scavenging in Antarctica: intense variation between sites and seasons in shallow benthic necrophagy. J Exp Mar Biol Ecol 349:405–417

    Article  Google Scholar 

  • Smale DA, Brown KM, Barnes DKA et al (2008) Ice scour disturbance in Antarctic shallow waters. Science 321:371

    Article  CAS  PubMed  Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale-falls at the deep sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Smith CR, Maybaum HL, Baco AR et al (1998) Sediment community structure around a whale skeleton in the deep Northeast Pacific: macrofaunal, microbial and bioturbation effects. Deep-Sea Res 45:335–364

    Article  CAS  Google Scholar 

  • Smith CR, Glover AG, Treude T et al (2015) Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. Annu Rev Mar Sci 7:571–596

    Article  Google Scholar 

  • Soltwedel T, von Juterzenka K, Premke K et al (2003) What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep seafloor. Oceanol Acta 26:623–628

    Article  Google Scholar 

  • Stachowitsch M (1984) Mass mortality in the Gulf of Trieste: the course of community destruction. PSZNI Mar Ecol 5:243–264

    Article  Google Scholar 

  • Stahler D, Heinrich B, Smith D (2002) Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Anim Behav 64:283–290

    Article  Google Scholar 

  • Subalusky AL, Dutton CL, Rosi EJ et al (2017) Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc Natl Acad Sci U S A 114:7647–7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson D, Onoufriou J, Brownlow A et al (2015) Preliminary report on predation by adult grey seals on grey seal pups as a possible explanation for corkscrew injury patterns seen in the unexplained seal deaths. Sea Mammal Research Unit, University of St Andrews, Report to Scottish Government, no. US1 and 6 addendum, St Andrews

    Google Scholar 

  • Tuyttens FAA, Stuyck JJJM (2002) Effectiveness and efficiency of chlorophacinone poisoning for the control of muskrat (Ondatra zibethicus) populations. N Z J Zool 29:33–40

    Article  Google Scholar 

  • Wikenros C, Sand H, Ahlqvist P et al (2013) Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS One 8:e77373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson DM (1991) Program review of the marine mammal stranding networks. Report to Assistant Administrator for Fisheries. NOAA

    Google Scholar 

  • Wilmers CC, Getz WM (2004) Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecol Model 177:193–208

    Article  Google Scholar 

  • Wilmers CC, Getz WM (2005) Gray wolves as climate change buffers in Yellowstone. PLoS Biol 3:571–576

    Article  CAS  Google Scholar 

  • Wilmers CC, Post E (2006) Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob Chang Biol 12:403–409

    Article  Google Scholar 

  • Wilmers CC, Crabtree RL, Smith DW et al (2003a) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916

    Article  Google Scholar 

  • Wilmers CC, Stahler DR, Crabtree RL et al (2003b) Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol Lett 6:996–1003

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  PubMed  Google Scholar 

  • Work TM, Balazs GH, Summers TM et al (2015) Causes of mortality in green turtles from Hawaii and the insular Pacific exclusive of fibropapillomatosis. Dis Aquat Org 115:103–110

    Article  CAS  Google Scholar 

  • Wright AJ, Maar M, Mohn C et al (2013) Possible Causes of a harbour porpoise mass stranding in Danish Waters in 2005. PLoS One 8(1–14):e55553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moleón, M., Selva, N., Quaggiotto, M.M., Bailey, D.M., Cortés-Avizanda, A., DeVault, T.L. (2019). Carrion Availability in Space and Time. In: Olea, P., Mateo-Tomás, P., Sánchez-Zapata, J. (eds) Carrion Ecology and Management. Wildlife Research Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-16501-7_2

Download citation

Publish with us

Policies and ethics