Skip to main content

Introduction to the Topic of Carrion Ecology and Management

  • Chapter
  • First Online:
Book cover Carrion Ecology and Management

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 2))

Abstract

Carrion, dead animal matter, is an inherent component of the all aquatic and terrestrial ecosystems, playing a central role in their functioning. Yet, unlike dead plant matter, the study of the decomposition of dead animals has received little attention in the fields of ecology, wildlife conservation and environmental management. In this introductory chapter, we present the topic of carrion ecology and management and outline the scope and structure of the book. Carrion usually appears in the ecosystems as a pulsed food resource exploited by a plethora of species from microorganisms to invertebrate and vertebrate scavengers. This wide diversity of carrion-eaters supports key ecological functions and ecosystem services such as the recycling of nutrients and energy, carcass disposal and disease spread regulation. Given the unpredictable and ephemeral nature of carrion, few animals have specialized in the sole consumption of this resource (obligate scavengers), and so most consumers (hundreds of species) exploit it optionally (facultative scavengers). Scavengers feeding on animal carcasses, i.e. scavenging, provide numerous trophic links that structure and stabilize the food webs. Carcasses are hotspots of biodiversity, pulses of essential nutrients and centres of intense biological activity, all of which contribute to increase the heterogeneity in the landscape. Today, carrion biomass in ecosystems is rapidly increasing as a result of growing human activities (e.g. farming, hunting, fisheries, road causalities). We need to know how carrion-subsidized ecosystems assimilate this anthropogenic dead biomass and what the ecological consequences of these inputs are. We have also conducted a bibliographic analysis indicating that, although research on carrion ecology and scavenging has grown in the last years (up to 84 articles in 2017), it still receives a very limited scientific attention within the ecology field, particularly compared with other ecological topics such as predation (5657 articles in 2017). This book aims to compile the existing knowledge in carrion ecology and management up to date to provide a comprehensive summary for researchers, wildlife managers, teachers and students approaching this emergent discipline of growing interests in ecology and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772

    Article  Google Scholar 

  • Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL (2013) Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol 50:440–450

    Article  CAS  Google Scholar 

  • Bicknell AWJ, Oro D, Camphuysen KCJ, Votier SC (2013) Potential consequences of discard reform for seabird communities. J Appl Ecol 50:649–658

    Article  Google Scholar 

  • Buechley ER, Şekercioğlu ÇH (2016) The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol Conserv 198:220–228

    Article  Google Scholar 

  • Carbone C, Turvey ST, Bielby J (2011) Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proc Biol Sci 278:2682–2690

    Article  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  Google Scholar 

  • Clua EE, Manire CA, Garrigue C (2014) Biological data of pygmy killer whale (Feresa attenuata) from a mass stranding in New Caledonia (South Pacific) associated with hurricane Jim in 2006. Aquat Mamm 40:162–172

    Article  Google Scholar 

  • Corlett RT (2015) The Anthropocene concept in ecology and conservation. Trends Ecol Evol 30:36–41

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287:443–449

    Article  CAS  Google Scholar 

  • DeVault TL, Krochmal AR (2002) Scavenging by snakes: an examination of the literature. Herpetologica 58:429–436

    Article  Google Scholar 

  • DeVault TL, Rhodes OE Jr, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  Google Scholar 

  • Donázar JA, Margalida A, Carrete M, Sánchez-Zapata JA (2009) Too sanitary for vultures. Science 326:664–664

    Article  Google Scholar 

  • Fallows C, Gallagher AJ, Hammerschlag N (2013) White sharks (Carcharodon carcharias) scavenging on whales and its potential role in further shaping the ecology of an apex predator. PLoS ONE 8:e60797

    Article  CAS  Google Scholar 

  • Finkelstein ME, Doak DF, George D, Burnett J, Brandt J, Church M, Grantham J, Smith DR (2012) Lead poisoning and the deceptive recovery of the critically endangered California condor. Proc Natl Acad Sci U S A 109(28):11449–11454

    Article  CAS  Google Scholar 

  • García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Greig DJ, Gulland FMD, Kreuder C (2005) A decade of live california sea lion (Zalophus californianus) strandings along the central California coast: causes and trends, 1991–2000. Aquat Mamm 3:11–22

    Article  Google Scholar 

  • Hoornweg H, Bhada-Tata P, Kennedy C (2013) Waste production must peak this century. Nature 502:615–617

    Article  Google Scholar 

  • Houston DC (1979) The adaptations of scavengers. In: Sinclair ARE, Griffiths MN (eds) Serengeti, dynamics of an ecosystem. The University of Chicago Press, Chicago, pp 263–286

    Google Scholar 

  • IUCN (2014) The IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 15 June 2018

  • Kane A, Healy K, Guillerme T, Ruxton GD, Jackson AL (2017) A recipe for scavenging in vertebrates - the natural history of a behaviour. Ecography 40:324–334

    Article  Google Scholar 

  • Margalida A, Campión D, Donázar JA (2014) Vultures vs livestock: conservation relationships in an emerging conflict between humans and wildlife. Oryx 48:172–176

    Article  Google Scholar 

  • Markandya A, Taylor T, Longo A, Murty MN, Murty S, Dhavala K (2008) Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol Econ 67(2):194–204

    Article  Google Scholar 

  • Martín-Vega D, Baz A, Michelsen V (2010) Back from the dead: Thyreophora cynophila (Panzer, 1798) (Diptera: Piophilidae) ‘globally extinct’ fugitive in Spain. Syst Entomol 35(4):607–613

    Article  Google Scholar 

  • Mateo-Tomá P, Olea PP, Jiménez-Moreno M, Camarero PR, Sánchez-Barbudo IS, Rodríguez Martín-Doimeadios RC, Mateo R (2016) Mapping the spatio-temporal risk of lead exposure in apex species for more effective mitigation. Proc Biol Sci 283:20160662

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP, Moleón M, Vicente J, Botella F, Selva N, Viñuela J, Sánchez-Zapata JA (2015) From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers Distrib 21:913–924

    Article  Google Scholar 

  • Michaud JP, Schoenly KG, Moreau G (2015) Rewriting ecological succession history: Did carrion ecologists get there first? Q Rev Biol 90:45–66

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA (2015) The living dead: time to integrate scavenging into ecological teaching. Bioscience 65:1003–1010

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA (2016) Non-trophic functions of carcasses: from death to the nest. Front Ecol Environ 14(6):340–341

    Article  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Morales-Reyes Z, Pérez-García JM, Moleón M, Botella F, Carrete M, Lazcano C, Moreno-Opo R, Margalida A, Donázar JA, Sánchez-Zapata JA (2015) Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Sci Rep 5:7811

    Article  CAS  Google Scholar 

  • Naranjo V, Gortazar C, Vicente J, de la Fuente J (2008) Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet Res 127:1–9

    Google Scholar 

  • Nowlin WH, Vanni MJ, Yang LH (2008) Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–659

    Article  Google Scholar 

  • O’Bryan CJ, Braczkowski AR, Beyer HL, Carter NH, Watson JEM, McDonald-Madden E (2018) The contribution of predators and scavengers to human well-being. Nat Ecol Evol 2:229–236

    Article  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ et al (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  Google Scholar 

  • Ogada DL, Torchin ME, Kinnaird MF, Ezenwa VO (2012) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv Biol 26:453–460

    Article  CAS  Google Scholar 

  • Ogada D, Botha A, Shaw P (2016) Ivory poachers and poisons: drivers of Africa’s declining vulture populations. Oryx 50:593–596

    Article  Google Scholar 

  • Olea PP, Mateo-Tomás P (2009) The role of traditional farming practices in ecosystem conservation: the case of trashumance and vultures. Biol Conserv 142:1844–1853

    Article  Google Scholar 

  • Olea PP, Sánchez-Barbudo IS, Viñuela J, Barja I, Mateo-Tomás P, Piñeiro A, Mateo R, Purroy FJ (2009) Lack of scientific evidence and precautionary principle in massive release of rodenticides threatens biodiversity: old lessons need new reflections. Environ Conserv 36:1–4

    Article  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514

    Article  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Payne LX, Moore JW (2006) Mobile scavengers create hotspots of freshwater productivity. Oikos 115:69–80

    Article  CAS  Google Scholar 

  • Putman RJ (1977) Dynamics of the blowfly, Calliphora erythrocephala, within carrion. J Anim Ecol 46:853

    Article  Google Scholar 

  • Putman RJ (1978a) Patterns of carbon dioxide evolution from decaying carrion: decomposition of small mammal carrion in temperate systems, part I. Oikos 31:47–57

    Article  CAS  Google Scholar 

  • Putman RJ (1978b) Flow of energy and organic matter from a carcase during decomposition: decomposition of small mammal carrion in temperate systems, part II. Oikos 31:58–68

    Article  CAS  Google Scholar 

  • Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. Edward Arnold (Publishers) Limited, London

    Google Scholar 

  • Ruxton GD, Houston DC (2004) Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol 228:431–436

    Article  Google Scholar 

  • Selva N (2004) The role of scavenging in the predator community of Białowieża Primeval Forest (E Poland). Ph.D. thesis, University of Sevilla

    Google Scholar 

  • Selva N, Fortuna MA (2007) The nested structure of a scavenger community. Proc Royal Soc B 274:1101–1108

    Article  Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Subalusky AL, Dutton CL, Rosi EJ, Post DM (2017) Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc Natl Acad Sci U S A 114(29):7647–7652

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tabor KL, Fell RD, Brewster CC (2005) Insect fauna visiting carrion in Southwest Virginia. Forensic Sci Int 150:73–80

    Article  Google Scholar 

  • Tella JL (2001) Action is needed now, or BSE crisis could wipe out endangered birds of prey. Nature 410:408–408

    Article  CAS  Google Scholar 

  • Vicente J, Carrasco R, Acevedo P, Montoro V, Gortazar C (2011) Big game waste production: sanitary and ecological implications. In: Kumar S (ed) Integrated waste management, vol II. InTech, Rijeka, pp 97–128

    Google Scholar 

  • Wilmers CC, Crabtree RL, Smith DW, Murphy KM, Getz WM (2003a) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916

    Article  Google Scholar 

  • Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM (2003b) Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA: resource dispersion and consumer dominance. Ecol Lett 6:996–1003

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses. Ecology 89:621–634

    Article  Google Scholar 

  • Young TP (1994) Natural die-offs of large mammals: implications for conservation. Conserv Biol 8:410–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro P. Olea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olea, P.P., Mateo-Tomás, P., Sánchez-Zapata, J.A. (2019). Introduction to the Topic of Carrion Ecology and Management. In: Olea, P., Mateo-Tomás, P., Sánchez-Zapata, J. (eds) Carrion Ecology and Management. Wildlife Research Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-16501-7_1

Download citation

Publish with us

Policies and ethics