Skip to main content

Ideal MHD Instabilities, with a Focus on the Rayleigh–Taylor and Kelvin–Helmholtz Instabilities

  • Chapter
  • First Online:
Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 591))

Abstract

In this chapter we focus on the magnetohydrodynamic (MHD) versions of the Rayleigh–Taylor and Kelvin–Helmholtz instabilities, taking the reader beyond the commonly presented situations to include how extra physics influences the stability of the models. After a discussion of the physical processes behind each instability we look at the general framework behind the study of ideal MHD instabilities, providing a detailed look at the derivation of the dispersion relation for a simple model. Extensions to this model are presented, including an investigation into how stability changes in the presence of a time-varying flow. Finally, we take a look at how nonlinearities develop and the role of the MHD in terms of the development of these nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P. Antolin, T. Yokoyama, T. Van Doorsselaere, Fine strand-like structure in the solar corona from magnetohydrodynamic transverse oscillations. Astrophys. J. Lett. 787, L22 (2014)

    Article  Google Scholar 

  • C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  • T.E. Berger, G. Slater, N. Hurlburt, R. Shine, T. Tarbell, A. Title, B.W. Lites, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, T. Magara, Y. Suematsu, T. Shimizu, Quiescent prominence dynamics observed with the hinode solar optical telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307 (2010)

    Article  Google Scholar 

  • J. Carlyle, A. Hillier, The non-linear growth of the magnetic Rayleigh–Taylor instability. Astron. Astrophys. 605, A101 (2017)

    Article  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961)

    MATH  Google Scholar 

  • G. Dimonte, D.L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M.J. Andrews, P. Ramaprabhu, A.C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.N. Young, M. Zingale, A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16, 1668–1693 (2004)

    Article  Google Scholar 

  • C. Foullon, E. Verwichte, V.M. Nakariakov, K. Nykyri, C. J. Farrugia, Magnetic Kelvin–Helmholtz Instability at the Sun. Astrophys. J. 729, L8 (2011)

    Article  Google Scholar 

  • J.P.H. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  • H. Helmholtz, Über discontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin 23, 215–228 (1868)

    Google Scholar 

  • A. Hillier, On the nature of the magnetic Rayleigh–Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Not. R. Astron. Soc. 462, 2256–2265 (2016)

    Article  Google Scholar 

  • A. Hillier, The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 1 (2018)

    Article  Google Scholar 

  • A. Hillier, V. Polito, Observations of the Kelvin–Helmholtz instability driven by dynamic motions in a solar prominence. Astrophys. J. Lett. 864, L10 (2018)

    Article  Google Scholar 

  • A. Hillier, A. Barker, I. Arregui, H. Latter, On Kelvin–Helmholtz and parametric instabilities driven by coronal waves. Mon. Not. R. Astron. Soc. 482, 1143–1153 (2019)

    Article  Google Scholar 

  • A.W. Hood, E.R. Priest, Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64, 303–321 (1979)

    Article  Google Scholar 

  • L.N. Howard, Note on a paper of John W. Miles. J. Fluid Mech. 10, 509–512 (1961)

    Article  MathSciNet  Google Scholar 

  • D.W. Hughes, S.M. Tobias, On the instability of magnetohydrodynamic shear flows. Proc. R. Soc. Lond. Ser. A 457, 1365 (2001)

    Article  MathSciNet  Google Scholar 

  • R.E. Kelly, The stability of unsteady Kelvin–Helmholtz flow. J. Fluid Mech. 22, 547–560 (1965)

    Article  MathSciNet  Google Scholar 

  • L. Kelvin, Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871)

    Article  Google Scholar 

  • M. Kruskal, M. Schwarzschild, Some instabilities of a completely ionized plasma. Proc. R. Soc. Lond. Ser. A 223, 348–360 (1954)

    Article  MathSciNet  Google Scholar 

  • A. Miura, P.L. Pritchett, Nonlocal stability analysis of the MHD Kelvin–Helmholtz instability in a compressible plasma. J. Geophys. Res. 87, 7431–7444 (1982)

    Article  Google Scholar 

  • L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177 (1883)

    MathSciNet  MATH  Google Scholar 

  • J.R. Ristorcelli, T.T. Clark, Rayleigh Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213–253 (2004)

    Article  MathSciNet  Google Scholar 

  • B. Roberts, On the hydromagnetic stability of an unsteady Kelvin–Helmholtz flow. J. Fluid Mech. 59, 65–76 (1973)

    Article  MathSciNet  Google Scholar 

  • M.S. Ruderman, Compressibility effect on the Rayleigh–Taylor instability with sheared magnetic fields. Solar Phys. 292, 47 (2017)

    Article  Google Scholar 

  • M.S. Ruderman, J. Terradas, J.L. Ballester, Rayleigh–Taylor instabilities with sheared magnetic fields. Astrophys. J. 785, 110 (2014)

    Article  Google Scholar 

  • J.M. Stone, T. Gardiner, Nonlinear evolution of the magnetohydrodynamic Rayleigh–Taylor instability. Phys. Fluids 19(9), 094104 (2007a)

    Article  Google Scholar 

  • J.M. Stone, T. Gardiner, The magnetic Rayleigh–Taylor instability in three dimensions. Astrophys. J. 671, 1726–1735 (2007b)

    Article  Google Scholar 

  • G. Taylor, The Instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. Ser. A 201, 192–196 (1950)

    Article  MathSciNet  Google Scholar 

  • J. Terradas, J. Andries, M. Goossens, I. Arregui, R. Oliver, J.L. Ballester, Nonlinear instability of kink oscillations due to shear motions. Astrophys. J. Lett. 687, L115 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Andrew Hillier is supported by his STFC Ernest Rutherford Fellowship grant number ST/L00397X/2 and STFC research grant ST/R000891/1. This work used the COSMA Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by a BIS National E-infrastructure capital grant ST/K00042X/1, DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the UK National E-Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hillier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hillier, A. (2020). Ideal MHD Instabilities, with a Focus on the Rayleigh–Taylor and Kelvin–Helmholtz Instabilities. In: MacTaggart, D., Hillier, A. (eds) Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. CISM International Centre for Mechanical Sciences, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-16343-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16343-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16342-6

  • Online ISBN: 978-3-030-16343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics