Skip to main content

Abstract

Land plants (Embryophyta) appear in the fossil record from about 470 MYA. Phylogenomic analysis favours the Zygnematophyceae (Charophytes) as their closest algal relative. Early land plants probably inherited somatic desiccation tolerance (poikilohydry) from their charophycean ancestor. Major innovations underpinning plant terrestrialization include sporophyte interpolation in an ancestrally haplobiontic cycle and symbiotic association with mycorrhizal fungi. Poikilohydry and a unisporangiate sporophyte permanently dependent on the gametophyte are ancestral traits retained in extant bryophytes. The evolution of a branched, autonomous sporophyte led to the emergence of polysporangiophytes in Mid Silurian. Homeohydry (the control of water loss) and xylem (a lignified water-conducting tissue) gave polysporangiophytes access to a multitude of novel habitats and niches, driving a dramatic increase in the biological diversity and complexity of terrestrial ecosystems. Roots and leaves evolved multiple times during the Devonian. Seed evolution in Late Devonian severed ancestral dependence on liquid water for sexual reproduction. With the assistance of their fungal associates, land plants are powerful geochemical agents. Their diffusion caused a dramatic decline in carbon dioxide concentration and an unprecedented rise of oxygen. By reducing carbon dioxide level, land plants cooled the planet, creating the conditions for the establishment of the current climatic regime. Land plant cover increases local rainfall and is essential for long-term maintenance of climatic conditions favourable to life on continental masses.

The best time to plant a tree was twenty years ago; the next best time is now.

(Confucius 551–479 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rock weathering is a minor source of nutrients to life in aquatic environments because the establishment of chemical equilibria between reagents and products rapidly stops rock dissolution. Consequently, the main source of mineral nutrients to aquatic ecosystems, including the oceans, is nutrient leakage from emerged continental masses.

References

  • Aires T, Marbà N, Cunha RL, Kendrick GA, Walker DI, Serrão EA, Duarte CM, Arnaud-Haond S (2011) Evolutionary history of the seagrass genus Posidonia. Mar Ecol Prog Ser 421:117–130

    Article  Google Scholar 

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc B 353:113–130

    Article  Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Ambrose BA (2013) The morphology and development of lycophytes. Annual Plant Reviews 45:91–114

    Google Scholar 

  • Bargel H et al (2006) Structure/function relationships of the plant cuticle and cuticular waxes: a smart material? Funct Plant Biol 33:893–910

    Article  CAS  Google Scholar 

  • Bateman RM et al (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292

    Article  Google Scholar 

  • Beerling DJ (2005) Leaf evolution: gases, genes and geochemistry. Ann Bot 96:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerling DJ (2007) The emerald planet, How plants changed Earth’s history. Oxford University Press, Oxford

    Google Scholar 

  • Beerling DJ, Fleming AJ (2007) Zimmermann’s telome theory of megaphyll leaf evolution: a molecular and cellular critique. Curr Opin Plant Biol 10:4–12

    Article  CAS  PubMed  Google Scholar 

  • Beerling DJ, Royer DL (2011) Convergent Cenozoic CO2 history. Nat Geosci 4:418–420

    Article  CAS  Google Scholar 

  • Berner RA (2003a) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  CAS  Google Scholar 

  • Berner RA (2003b) The rise of trees and their effects on Paleozoic atmospheric CO2 and O2. Compt Rendus Geosci 335:1173–1177

    Article  CAS  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Article  CAS  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  • Berner RA, VandenBrooks JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  CAS  Google Scholar 

  • Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:233–240

    Article  PubMed  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Blackwell WH (2003) Two theories of origin of the land-plant sporophyte: which is left standing? Bot Rev 69:125–148

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL (2013) Walkabout on the long branches of plant evolution. Curr Opin Plant Biol 16:70–77

    Article  PubMed  Google Scholar 

  • Boyce CK, Knoll AH (2002) Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28:70–100

    Article  Google Scholar 

  • Boyce CK, Lee J-E (2011) Could land plant evolution have fed the marine revolution? Paleontol Res 15:100–105

    Article  Google Scholar 

  • Boyce CK et al (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Philos Trans R Soc B 276:1771–1776

    Google Scholar 

  • Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:108. https://doi.org/10.3389/fpls.2013.00108

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    Article  PubMed  Google Scholar 

  • Brodribb TJ et al (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173:673–694

    Article  Google Scholar 

  • Brundett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  Google Scholar 

  • Brunkard JO, Zambryski PC (2016) Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. Curr Opin Plant Biol 35:76–83

    Article  PubMed  Google Scholar 

  • Carlquist S (2012) How wood evolves: a new synthesis. Botany 90:901–940

    Article  Google Scholar 

  • Chater CC et al (2011) Regulatory mechanisms controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr Biol 21:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Chater CC et al (2016) Origin and function of stomata in the moss Physcomitrella patens. Nat Plants 2:16179. https://doi.org/10.1038/NPLANTS.2016.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chater CC et al (2017) Origins and evolution of stomatal development. Plant Physiol 174:624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civàň P et al (2014) Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 6:897–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke JT et al (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    Article  PubMed  Google Scholar 

  • Cochard H et al (2010) The effects of sap ionic composition on xylem vulnerability to cavitation. J Exp Bot 61:275–285

    Article  CAS  PubMed  Google Scholar 

  • Cook ME, Graham LE (1998) Structural similarities between surface layers of charophycean algae and bryophytes and the cuticle of vascular plants. Int J Plant Sci 159:780–787

    Article  Google Scholar 

  • Cox CJ et al (2014) Conflicting phylogenies for early and plants are caused by composition biases among synonymous substitutions. Syst Biol 63:272–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane PR, Kenrick P (1997) Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Syst Evol 206:161–174

    Article  Google Scholar 

  • de Vries J, Archibald M (2018) Plant evolution: landmarks on the path to terrestrial life. New Phytol. https://doi.org/10.1111/nph.14975

    Article  PubMed  Google Scholar 

  • Delaux P-M (2017) Comparative phylogenomics of symbiotic associations. New Phytol 213:89–94

    Article  CAS  PubMed  Google Scholar 

  • Delaux P-M et al (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10:e1004487. https://doi.org/10.1371/journal.pgen.1004487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delwiche CF, Cooper ED (2015) The evolutionary origin of a terrestrial flora. Curr Biol 25:R899–R910. https://doi.org/10.1016/j.cub.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  • Diaz S et al (2016) The global spectrum of plant form and function. Nature 529:167–178

    Article  CAS  PubMed  Google Scholar 

  • Domìnguez E et al (2010) Self-assembly of supramolecular lipid nanoparticles in the formation of plant biopolyester cutin. Mol BioSyst 6:948–950

    Article  PubMed  CAS  Google Scholar 

  • Domozych DS, Popper ZA, Sørensen I (2017) Charophytes: evolutionary giants and emerging model organisms. Front Plant Sci 7:1470. https://doi.org/10.3389/fpls.2016.01470

    Article  Google Scholar 

  • Doyle JA (2013) Phylogenetic analyses and morphological innovations in land plants. Annu Plant Rev 45:1–50

    Google Scholar 

  • Duckett JG, Pressel S (2017) The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes – two ignored dimensions. Philos Trans R Soc B 373:20160498. https://doi.org/10.1098/rstb.2016.0498

    Article  CAS  Google Scholar 

  • Ehlers J, Gibbard PL (2007) The extent and chronology of Cenozoic global glaciation. Quat Int 164–165:6–20

    Article  Google Scholar 

  • Farrant JM, Moore JP (2011) Programming desiccation tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345

    Article  CAS  PubMed  Google Scholar 

  • Fernàndez V et al (2016) Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front Plant Sci. 31 https://doi.org/10.3389/fpls.2016.00427

  • Field KJ et al (2015) Symbiotic options for the conquest of land. Trends Ecol Evol 30:477–486

    Article  PubMed  Google Scholar 

  • Fletcher BJ et al (2006) BRYOCARB: a process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature. Geochim Cosmochim Acta 70:5676–5691

    Article  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2006) Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol 16:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Beerling DJ (2009) CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227–236

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Buck WR (2013) The evolution of body form in bryophytes. Annu Plant Rev 45:51–90

    Google Scholar 

  • Graham LKE, Wilcox LW (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philos Trans R Soc Lond B 355:757–767

    Article  CAS  Google Scholar 

  • Graham LKE, Wilcox LW (2003) The occurrence and phylogenetic significance of putative placental transfer cells in the green alga Coleochaete. Am J Bot 70:113–120

    Article  Google Scholar 

  • Graham LKE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci U S A 97:4535–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham LKE et al (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early adaptation to land. Am J Bot 88:1–15

    Google Scholar 

  • Graham LKE et al (2014) Early Terrestrialization: transition from algal to bryophyte grade. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants, Advances in photosynthesis and respiration, vol 37. Springer, Dordrecht, pp 9–28

    Chapter  Google Scholar 

  • Haig D (2008) Homologous versus antithetic alternation of generations and the origin of sporophytes. Bot Rev 74:395–418

    Article  Google Scholar 

  • Hao S et al (2010) Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol 185:217–225

    Article  PubMed  Google Scholar 

  • Harrison CJ (2017) Development and genetics in the evolution of land plant body plans. Philos Trans R Soc B 372:20150490. https://doi.org/10.1098/rstb.2015.0490

    Article  Google Scholar 

  • Harrison CJ, Morris JL (2017) The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc B 373:20160496. https://doi.org/10.1098/rstb.2016.0496

    Article  CAS  Google Scholar 

  • Haworth M, Elliott-Kingston C, McElwain JC (2011) Stomatal control as a driver of plant evolution. J Exp Bot 62:2419–2423

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AJ, Dolan L (2017) Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philos Trans R Soc Lond B 373:20170042. https://doi.org/10.1098/rstb.2017.0042

    Article  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327. https://doi.org/10.3389/fpls.2013.00327

    Article  PubMed  PubMed Central  Google Scholar 

  • Honkanen S et al (2016) The mechanism forming the cell surface of tip-growing rooting cells is conserved among land plants. Curr Biol 26:3238–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys CP et al (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103. https://doi.org/10.1038/ncomms1105

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K (2015) Development of schizogenous intercellular spaces in plants. Front Plant Sci 6:497. https://doi.org/10.3389/fpls.2015.00497

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    Article  PubMed  Google Scholar 

  • Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 11–125

    Chapter  Google Scholar 

  • Jones VAS, Dolan L (2012) The evolution of root hairs and rhizoids. Ann Bot 110:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenrick P (2017) How land plant life cycles first evolved. Science 358:1538–1539

    Article  CAS  PubMed  Google Scholar 

  • Kenrick P, Crane PR (1991) Water-conducting cells in early fossil land plants: implications for the early evolution of tracheophytes. Bot Gaz 152:335–356

    Article  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Kenrick P, Strullu-Derrien C (2014) The origin and early evolution of roots. Plant Physiol 166:570–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenrick P et al (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Paleozoic. Philos Trans R Soc B 367:519–536

    Article  Google Scholar 

  • Kerp H, Trewin NH, Hass H (2004) New gametophytes from the Early Devonian Rhynie Chert. Trans R Soc Edinb 94:411–428

    Article  Google Scholar 

  • Landerweert R et al (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol 16:248–254

    Article  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  PubMed  Google Scholar 

  • Leliaert F et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Lenton TM, Daines SJ (2016) Matworld - the biogeochemical effects of early life on land. New Phytol. https://doi.org/10.1111/nph.14338

    Article  PubMed  CAS  Google Scholar 

  • Lenton T, Watson A (2011) Revolutions that made the Earth. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lenton TM et al (2012) First plants cooled the Ordovician. Nat Geosci 5:86–89

    Article  CAS  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (2000) Conducting tissues and phyletic relationships of bryophytes. Philos Trans R Soc Lond B 355:815–831

    Article  Google Scholar 

  • Ligrone R et al (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol 270:257–272

    Article  CAS  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (2012) Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot 109:851–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2014) Mitochondrial phylogenomics of early and plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst Biol 63:862–878

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ et al (2013) The plant vascular system: evolution, development and function. J Integr Plant Biol 55:294–388

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie G et al (2015) Sporopollenin, the least known yet toughest natural biopolymer. Front Mater 2:66. https://doi.org/10.3389/fmats.2015.00066

    Article  Google Scholar 

  • Magallòn S, Hilu KW (2009) Land plants (Embryophyta). In: Hedge SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 133–137

    Google Scholar 

  • Martin FM, Uroz S, Barker DG (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356(6340):eaad4501. https://doi.org/10.1126/science.aad4501

    Article  CAS  PubMed  Google Scholar 

  • McAdam SAM, Brodribb TJ (2012) Stomatal innovation and the rise of seed plants. Ecol Lett 15:1–8

    Article  Google Scholar 

  • Merced A, Renzaglia KS (2017) Structure, function and evolution of stomata from a bryological perspective. Bry Div Evo 39:7–20

    Google Scholar 

  • Mills BJW, Batterman SA, Field KJ (2017) Nutrient acquisition by symbiotic fungi governs Paleozoic climate transition. Philos Trans R Soc Lond B 373:20160503. https://doi.org/10.1098/rstb.2016.0503

    Article  CAS  Google Scholar 

  • Mitchell RL et al (2016) Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44:1007–1010

    Article  CAS  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011a) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Jansen S (2011b) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718

    Article  CAS  PubMed  Google Scholar 

  • Nelsen MP et al (2016) Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc Natl Acad Sci U S A 113:2442–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans – a biomechanical perspective. Ann Bot 85:411–438

    Article  Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    Article  CAS  PubMed  Google Scholar 

  • Ogden DE, Sleep NH (2012) Explosive eruption of coal and basalt and the end-Permian mass extinction. Proc Natl Acad Sci USA 109:59–62

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats. Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Pires ND, Dolan L (2012) Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc B 367:508–518

    Article  CAS  Google Scholar 

  • Porada P et al (2016) High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat Commun 7:12113. https://doi.org/10.1038/ncomms12113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pressel S, Goral T, Duckett JG (2014) Stomatal differentiation and abnormal stomata in hornworts. J Bryol 36:87–103

    Article  Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–49

    Article  Google Scholar 

  • Proctor MCF et al (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Proust H et al (2016) RSL class I genes controlled the development of epidermal structures in the common ancestor of land plants. Curr Biol 26:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puttick MN et al (2018) The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28:1–13

    Article  CAS  Google Scholar 

  • Qiu Y-L (2008) Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46:287–306

    Google Scholar 

  • Qiu Y-L et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y-L, Taylor AB, McManus HA (2012) Evolution of the life cycle in land plants. J Syst Evol 50:171–194

    Article  Google Scholar 

  • Quirk J et al (2012) Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol Lett 8:1006–1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascio N, La Rocca N (2005) Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Crit Rev Plant Sci 24:209–225

    Article  CAS  Google Scholar 

  • Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142

    Article  Google Scholar 

  • Raven JA (2002) Selection pressures on stomatal evolution. New Phytol 153:371–386

    Article  CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Read DJ et al (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B 355:815–831

    Article  CAS  Google Scholar 

  • Renner S (2009) Gymnosperms. In: Hedge SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 157–160

    Google Scholar 

  • Rensing SA (2018) Plant evolution: phylogenetic relationships between the earliest land plants. Curr Biol 28:R210–R213. https://doi.org/10.1016/j.cub.2018.01.034

    Article  CAS  PubMed  Google Scholar 

  • Renzaglia KS et al. (2017) Hornwort stomata: architecture and fate shared with 400-million-year-old fossil plants without leaves. Plant Physiology 174:788–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippin M, Becker B, Holzginer A (2017) Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol 58:2067–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AW et al (2004) Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements. Protoplasma 224:217–229

    Article  CAS  PubMed  Google Scholar 

  • Roland JC (1978) Cell wall differentiation and stages involved with intercellular gas space opening. J Cell Sci 32:325–336

    CAS  PubMed  Google Scholar 

  • Royer DL et al (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:4–10. https://doi.org/10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2

    Article  Google Scholar 

  • Ruhfel BR et al (2014) From algae to angiosperms: inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. https://doi.org/10.1186/1471-2148-14-23

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakakibara K et al (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella but do function in sporophyte development. Evol Dev 10:555–566

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara K et al (2013) KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Schneider H (2013) Evolutionary morphology of ferns (Monilophytes). Annu Plant Rev 45:115–140

    Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Smith R (2011) Lost world. Nature 479:287–289

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Sperry JS (2010) Hydraulics of vascular water transport. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants, vol 9. Springer, pp 303–327

    Google Scholar 

  • Strullu-Derrien C, Paul Kenrick P, Marc-André Selosse MA (2016) Origins of the mycorrhizal symbioses. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley, New York, pp 1–20

    Google Scholar 

  • Taboada-Diego A et al (2014) Hollow pollen shells to enhance drug delivery. Pharmaceutics 6:80–96

    Article  CAS  Google Scholar 

  • Tam THY, Catarino B, Dolan L (2015) Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. In: Proceedings of the National Academy of Sciences USA E3959-E3968. www.pnas.org/cgi/doi/10.1073/pnas.1416324112

    Article  CAS  Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci U S A 102:5892–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany. The biology and evolution of fossil plants. Academic, London

    Google Scholar 

  • Taylor LL et al (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  PubMed  Google Scholar 

  • Taylor LL et al (2012) Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Philos Trans R Soc Lond B 367:565–582

    Article  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Terrer C et al (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    Article  CAS  PubMed  Google Scholar 

  • Tomescu AMF (2008) Microphylls, megaphylls and the evolution of leaf development. Trends Plant Sci 14:5–12

    Article  PubMed  CAS  Google Scholar 

  • Tomescu AMF et al (2009) Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr Palaeoclimatol Palaeoecol 283:46–59

    Article  Google Scholar 

  • Tomescu AMF et al (2018) Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. In: Krings M et al (eds) Transformative paleobotany. Academic, London, pp 375–416. https://doi.org/10.1016/B978-0-12-813012-4.00016-4

    Chapter  Google Scholar 

  • Tuomela M et al (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • van der Heijden M et al (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Venturas MD, Sperry JS, Hacke UG (2017) Plant xylem hydraulics: what we understand, current research, and future challenges. J Integr Plant Biol 59:356–389

    Article  PubMed  Google Scholar 

  • Voesenek LA et al (2006) How plants cope with complete submergence. New Phytol 170:213–226

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Wang Y et al (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220. https://doi.org/10.3389/fpls.2013.00220

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkins JE et al (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    Article  PubMed  Google Scholar 

  • Wellman CH, Strother PK (2015) The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Paleontology 58:601–627

    Article  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  CAS  PubMed  Google Scholar 

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  Google Scholar 

  • Wickett NJ, Goffinet B (2008) Origin and relationships of the myco-heterotrophic liverwort Cryptothallus mirabilis Malmb. (Metzgeriales, Marchantiophyta). Bot J Linn Soc 156:1–12

    Article  Google Scholar 

  • Wickett NJ et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111:E4859–E4868

    Article  CAS  PubMed  Google Scholar 

  • Willis KJ, McElwain JC (2014) The evolution of plants. Oxford University press, Oxford

    Google Scholar 

  • Wood AJ (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts, and mosses. Bryologist 110:163–177

    Article  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ligrone, R. (2019). Land Plants. In: Biological Innovations that Built the World. Springer, Cham. https://doi.org/10.1007/978-3-030-16057-9_11

Download citation

Publish with us

Policies and ethics