Skip to main content

Dietary Considerations in Myositis

  • Chapter
  • First Online:
Managing Myositis
  • 967 Accesses

Abstract

Diet has long been known to have a crucial impact on human health and diseases. Much of the research in dietary influence on rheumatic diseases was done in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Little is known in the field of inflammatory myopathy. In this chapter, we review the impact of gluten, vitamin D, creatine, protein-rich diets, retinoid acid, dietary statin, anti-inflammatory diets, and the gut microbiome in the development and management of myositis. Overall, there are few studies and low patient numbers, but an increased incidence of celiac disease in idiopathic inflammatory myositis (IIM) including inclusion body myositis (IBM) was noted even though treatment with a gluten-free diet alone led to no improvement. Low serum vitamin D levels were reported in one Swedish myositis cohort, but no data to support vitamin D supplementation beyond osteoporosis prevention was identified. Creatine supplementation as an adjunctive therapy in myositis in two small randomized trials yielded conflicting results. Results of protein supplementation in patients with muscular deconditioning or muscle diseases are also disappointing. The use of retinoids, as a vitamin A derivative, was limited due to lack of efficacy and side effects in rheumatic diseases. In patients with immune-mediated necrotizing myopathy, one should inquire about the use of red yeast rice, oyster mushroom, soy products, and various grains which can be a source of statin. Although there is no definitive evidence of dysbiosis or an imbalance in the gut microbiome in myositis, a Mediterranean diet may be considered given its well-documented cardiovascular benefit. At present, no particular diet or nutritional supplementations can be endorsed in the management of myositis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backhed F. Host-bacterial mutualism in the human intestine. Science (80- ) [Internet]. 2005;307(5717):1915–20. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1104816.

    Article  CAS  Google Scholar 

  2. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011:569–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE, Wagner BD, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes. 2015;64(10):3510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castillo-Álvarez F, Marzo-Sola ME. Role of intestinal microbiota in the development of multiple sclerosis. Neurologia [Internet]. 2015. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26383059.

  5. Consolandi C, Turroni S, Emmi G, Severgnini M, Fiori J, Peano C, et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmunity Rev. 2015:269–76.

    Article  PubMed  Google Scholar 

  6. Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5(5)

    Google Scholar 

  7. López P, Sánchez B, Margolles A, Suárez A. Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence? Curr Opin Rheumatol [Internet]. 2016;28(5):515–22. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00002281-201609000-00009%0A http://www.ncbi.nlm.nih.gov/pubmed/27466725.

    Article  CAS  Google Scholar 

  8. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2013(2)

    Google Scholar 

  9. Scher JU, Ubeda C, Equinda M, Khanin R, Buischi Y, Viale A, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64(10):3083–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, et al. Commensal microbiota influence systemic autoimmune responses. TL - 34. EMBO J. 2015;34 VN-r(4):466–74.

    Article  CAS  Google Scholar 

  11. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905.

    Article  CAS  PubMed  Google Scholar 

  12. Hadjivassiliou M, Grünewald R, Davies-Jones G. Gluten sensitivity as a neurological illness. J Neurol Neurosurg Psychiatry [Internet] 2002;72(5):560–563 . Available from: http://www.ncbi.nlm.nih.gov/pubmed/11971034%5Cn http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1737870%5Cn http://jnnp.bmj.com/content/72/5/560.full.pdf+html.

    Article  CAS  Google Scholar 

  13. Buderus S, Wagner N, Lentze MJ. Concurrence of celiac disease and juvenile dermatomyositis: result of a specific immunogenetic susceptibility? J Pediatr Gastroenterol Nutr [Internet]. 1997. Available from: http://journals.lww.com.sci-hub.io/jpgn/Fulltext/1997/07000/Concurrence_of_Celiac_Disease_and_Juvenile.18.aspx#.

  14. Molnár K, Torma K, Siklós K, Csanády K, Korponay-Szabó I, Szalai Z. Juvenile dermatomyositis and celiac disease. A rare association. Eur J Pediatr Dermatol [Internet]. 2006;16(3):153–7. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L44862486%5Cn http://link.kib.ki.se/?sid=EMBASE&issn=11227672&id=doi:&atitle=Juvenile+dermatomyositis+and+celiac+disease.+A+rare+association&stitle=Eur.+J.+Pediatr.+Dermatol.&title=Eu.

    Google Scholar 

  15. Marseglia A, Pellegrino M, Pastore M, D’Altilia MR, Amarri S, Sacco M. Celiac disease in juvenile dermatomyositis: a case report. Dig Liver Dis [Internet]. 2011;43:S435. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L70678601%5Cn http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=15908658&id=doi:&atitle=Celiac+disease+in+juvenile+dermatomyositis%3A+A+case+report&stitle=Dig.+Liver+Dis.&title=Digesti

  16. Henriksson KG, Hallert C, Walan A. Gluten-sensitive polymyositis and enteropathy. Lancet. 1976. 317.

    Article  Google Scholar 

  17. Henriksson KG, Hallert C, Norrby K, Walan A. Polymyositis and adult coeliac disease. Acta Neurol Scand. 1982;65(4):301–19.

    Article  CAS  PubMed  Google Scholar 

  18. Hadjivassiliou M, Chattopadhyay AK, Grünewald RA, Jarratt JA, Kandler RH, Rao DG, et al. Myopathy associated with gluten sensitivity. Muscle Nerve. 2007;35(4):443–50.

    Article  CAS  PubMed  Google Scholar 

  19. Danielsson O, Lindvall B, Hallert C, Vrethem M, Dahle C. Increased prevalence of celiac disease in idiopathic inflammatory myopathies. Brain Behav [Internet]. 2017 [cited 2017 Dec 9];7(10):e00803. Available from: http://doi.wiley.com/10.1002/brb3.803

    Article  PubMed  PubMed Central  Google Scholar 

  20. Badrising UA , Schreuder GMT, Giphart MJ, Geleijns K, Verschuuren JJGM, Wintzen AR, et al. Associations with autoimmune disorders and HLA class I and II antigens in inclusion body myositis. Neurology 2004;63(12):2396–2398.

    Article  CAS  PubMed  Google Scholar 

  21. Selva-O’Callaghan A, Casellas F, de Torres I, Palou E, Grau-Junyent JM, Vilardell-Tarrés M. Celiac disease and antibodies associated with celiac disease in patients with inflammatory myopathy. Muscle Nerve [Internet]. 2007;35(1):49–54. Available from: http://doi.wiley.com/10.1002/mus.20652

    Article  CAS  Google Scholar 

  22. Farré C, Humbert P, Vilar P, Varea V, Aldeguer X, Carnicer J, et al. Serological markers and HLA-DQ2 haplotype among first-degree relatives of celiac patients. Catalonian coeliac disease study group. Dig dis Sci [Internet]. 1999;44(11):2344–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10573385.

  23. O’Hanlon TP, Carrick DM, Arnett FC, Reveille JD, Carrington M, Gao X, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1 and -DQA1 allelic profiles and motifs define clinicopathologic groups in caucasians. Medicine (Baltimore) [Internet]. 2005;84(6):338–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16267409.

    Article  CAS  PubMed  Google Scholar 

  24. Tighe M, Ciclitira P. The implications of recent advances in coeliac disease. Acta Paediatr [Internet]. Blackwell Publishing Ltd; 1993 1 [cited 2017 Dec 9];82(11):805–10. Available from: http://doi.wiley.com/10.1111/j.1651-2227.1993.tb12566.x

  25. Friedman JM, Pachman LM, Maryjowski ML, Radvany RM, Crowe WE, Hanson V, et al. Immunogenetic studies of juvenile dermatomyositis: hla-dr antigen frequencies. Arthritis Rheum. 1983;26(2):214–6.

    Article  CAS  PubMed  Google Scholar 

  26. Marie I, Lecomte F, Hachulla E, Antonietti M, François A, Levesque H, et al. An uncommon association: celiac disease and dermatomyositis in adults. Clin Exp Rheumatol. 2001;19(2):201–3.

    CAS  PubMed  Google Scholar 

  27. Song MS, Farber D, Bitton A, Jass J, Singer M, Karpati G. Dermatomyositis associated with celiac disease: response to a gluten-free diet. Can J Gastroenterol. 2006;20(6):433–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Molecul Biol. 2005. 93–101.

    Article  PubMed  CAS  Google Scholar 

  29. Helming L, Bose J, Ehrchen J, Schiebe S, Frahm T, Geffers R, et al. 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood [Internet]. 2005;106(13):4351–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16118315.

    Article  CAS  PubMed  Google Scholar 

  30. Griffin MD, Lutz WH, Phan V. A, Bachman L a, McKean DJ, Kumar R. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun. 2000;270(3):701–8.

    Article  CAS  PubMed  Google Scholar 

  31. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80:1689S.

    Article  CAS  PubMed  Google Scholar 

  32. Kamen DL, Cooper GS, Bouali H, Shaftman SR, Hollis BW, Gilkeson GS. Vitamin D. Deficiency in systemic lupus erythematosus. Autoimmun rev [Internet]. 2006;5(2):114–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16431339.

  33. Kamen D, Aranow C. Vitamin D in systemic lupus erythematosus. Curr Opin Rheumatol. 2008;20(5):532–7.

    Article  CAS  PubMed  Google Scholar 

  34. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S.

    Article  CAS  PubMed  Google Scholar 

  35. Cutolo M, Plebani M, Shoenfeld Y, Adorini L, Tincani A. Vitamin D endocrine system and the immune response in rheumatic diseases. Vitamins Hormones. 2011. 327–351

    Google Scholar 

  36. Azali P, Barbasso Helmers S, Kockum I, Olsson T, Alfredsson L, Charles PJ, et al. Low serum levels of vitamin D in idiopathic inflammatory myopathies. Ann Rheum Dis [Internet]. 2013;72(4):512–6. Available from: http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2012-201849.

    Article  CAS  Google Scholar 

  37. Zhou C, Assem M, Tay JC, Watkins PB, Blumberg B, Schuetz EG, et al. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest. 2006;116(6):1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruiz-Irastorza G, Egurbide M V, Olivares N, Martinez-Berriotxoa A, Aguirre C. Vitamin D. Deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology (Oxford) [Internet]. 2008;47(6):920–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18411213.

    Article  CAS  PubMed  Google Scholar 

  39. Young KA, Munroe ME, Guthridge JM, Kamen DL, Niewold TB, Gilkeson GS, et al. Combined role of vitamin D status and <em>CYP24A1</em> in the transition to systemic lupus erythematosus. Ann Rheum Dis [Internet]. 2017;76(1):153–158. Available from: http://ard.bmj.com/content/76/1/153.abstract

  40. Abou-Raya A, Abou-Raya S, Helmii M. The effect of vitamin D supplementation on inflammatory and hemostatic markers and disease activity in patients with systemic lupus erythematosus: a randomized placebo-controlled trial. J Rheumatol. 2013;40(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  41. Gurion R, Tangpricha V, Yow E, Schanberg LE, McComsey GA, Robinson AB. Avascular necrosis in pediatric systemic lupus erythematosus: a brief report and review of the literature. Pediatr Rheumatol [Internet]. 2015;13(1):13. Available from: https://doi.org/10.1186/s12969-015-0008-x.

  42. Lima GL, Paupitz J, Aikawa NE, Takayama L, Bonfa E, Pereira RMR. Vitamin D supplementation in adolescents and young adults with juvenile systemic lupus Erythematosus for improvement in disease activity and fatigue scores: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res [Internet] 2016;68(1):91–98 . Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L608070348%5Cn http://dx.doi.org/10.1002/acr.22621.

    Google Scholar 

  43. Shoenfeld Y, Giacomelli R, Azrielant S, Berardicurti O, Reynolds JA, Bruce IN. Vitamin D and systemic lupus erythematosus – The hype and the hope. Autoimmun Rev [Internet]. 2017; Available from: http://www.sciencedirect.com/science/article/pii/S156899721730277X

  44. Emerah AA, El-Shal AS. Role of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D level in Egyptian female patients with systemic lupus erythematosus. Mol Biol Rep. 2013;40(11):6151–62.

    Article  CAS  PubMed  Google Scholar 

  45. Dzhebir G, Kamenarska Z, Hristova M, Savov A, Vinkov A, Kaneva R, et al. Association of vitamin D receptor gene BsmI B/b and FokI F/f polymorphisms with adult dermatomyositis and systemic lupus erythematosus. Int J Dermatol [Internet]. 2016;55(8):e465–8. Available from: https://doi.org/10.1111/ijd.13263

    Article  Google Scholar 

  46. Wang J, Chen J, Zhang J, Pu C. Vitamin D receptor mRNA expression from muscle tissue is significantly different between idiopathic inflammatory myopathy and limb-girdle muscular dystrophy type 2B patients. J Neurol Sci. EGE Univ Hosp. FAC MED, Dept Neurosurgery, BORNOVA-IZMIR, TR35100, Turkey: Journal Neurological Sciences; 2014;31(1):60–9.

    Google Scholar 

  47. Luo X-Y, Yang M-H, Wu F-X, Wu L-J, Chen L, Tang Z, et al. Vitamin D receptor gene BsmI polymorphism B allele, but not BB genotype, is associated with systemic lupus erythematosus in a Han Chinese population. Lupus. 1 Olivers Yard, 55 city road, London EC1Y 1SP, England: Sage Publications ltd; 2012;21(1):53–9.

    Article  PubMed  Google Scholar 

  48. Crescioli C, Sottili M, Bonini P, Cosmi L, Chiarugi P, Romagnani P, et al. Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target. Eur J Cell Biol. 2012;91(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  49. Di Luigi L, Sottili M, Antinozzi C, Vannelli GB, Romanelli F, Riccieri V, et al. The Vitamin D Receptor Agonist BXL-01-0029 as a Potential New Pharmacological Tool for the Treatment of Inflammatory Myopathies. PLoS One [Internet]. 2013;8(10):e77745. Available from: http://dx.plos.org/10.1371/journal.pone.0077745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reynolds JA, Bruce IN. Vitamin D Treatment for connective tissue diseases: hope beyond the hype? Rheumatology (Oxford) [Internet]. 2016;1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27179106.

  51. Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, et al. 2017. American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Care Res (Hoboken) [Internet]. 2017 [cited 2017 Dec 26];69(8):1095–110. Available from: http://doi.wiley.com/10.1002/acr.23279

  52. Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, et al. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurol Int. 2004;62(10):1771–7. Available from: http://www.neurology.org/cgi/doi/10.1212/01.WNL.0000125178.18862.9D.

    CAS  Google Scholar 

  53. Kley RA, Tarnopolsky MA, Vorgerd M. Creatine for treating muscle disorders. In: Kley RA, editor. Cochrane Database of Systematic Reviews [Internet]. Chichester: Wiley; 2013 [cited 2017 Dec 13]. Available from: http://doi.wiley.com/10.1002/14651858.CD004760.pub4

  54. Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve. 1999;22(9):1228–33.

    Article  CAS  PubMed  Google Scholar 

  55. Park JH, Vital TL, Ryder NM, Hernanz-Schulman M, Leon Partain C, Price RR, et al. Magnetic resonance imaging and p-31 magnetic resonance spectroscopy provide unique quantitative data useful in the longitudinal management of patients with dermatomyositis. Arthritis Rheum. 1994;37(5):736–46.

    Article  CAS  PubMed  Google Scholar 

  56. Chung YL, Alexanderson H, Pipitone N, Morrison C, Dastmalchi M, Ståhl-Hallengren C, et al. Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: six-month, double-blind, randomized, placebo-controlled trial. Arthritis Care Res. 2007;57(4):694–702.

    Article  CAS  Google Scholar 

  57. Solis MY, Hayashi AP, Artioli GG, Roschel H, Sapienza MT, Otaduy MC, et al. Efficacy and safety of creatine supplementation in juvenile dermatomyositis: a randomized, double-blind, placebo-controlled crossover trial. Muscle Nerve. 2016;53:58.

    Article  CAS  PubMed  Google Scholar 

  58. Andres S, Ziegenhagen R, Trefflich I, Pevny S, Schultrich K, Braun H, et al. Creatine and creatine forms intended for sports nutrition. Mol Nutr Food Res [Internet]. 2017;61(6):1600772. Available from: https://doi.org/10.1002/mnfr.201600772

    Article  CAS  Google Scholar 

  59. Moret S, Prevarin A, Tubaro F. Levels of creatine, organic contaminants and heavy metals in creatine dietary supplements. Food Chem [Internet]. 2011;126(3):1232–8. Available from: http://www.sciencedirect.com/science/article/pii/S0308814610016377.

    Article  CAS  Google Scholar 

  60. Koopman R, Gleeson BG, Gijsen AP, Groen B, Senden JMG, Rennie MJ, et al. Post-exercise protein synthesis rates are only marginally higher in type I compared with type II muscle fibres following resistance-type exercise. Eur J Appl Physiol. 2011;111(8):1871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.

    Article  CAS  PubMed  Google Scholar 

  62. Pennings B, Groen B, de Lange A, Gijsen AP, Zorenc AH, Senden JMG, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. AJP Endocrinol Metab [Internet]. 2012;302(8):E992–9.Available from: http://ajpendo.physiology.org/cgi/doi/10.1152/ajpendo.00517.2011.

    Article  CAS  Google Scholar 

  63. Wolfe RR. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br J Nutr [Internet]. 2012;108(Suppl):S88–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23107552.

    Article  CAS  Google Scholar 

  64. Dirks ML, Wall BT, Nilwik R, Weerts DHJM, Verdijk LB, van Loon LJC. Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr [Internet]. 2014;144(8):1196–203. Available from: http://jn.nutrition.org/cgi/doi/10.3945/jn.114.194217.

    Article  CAS  Google Scholar 

  65. Andersen G, Prahm KP, Dahlqvist JR, Citirak G, Vissing J. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy. Neurology. 2015;85(5):396–403.

    Article  CAS  PubMed  Google Scholar 

  66. Wu G. Dietary protein intake and human health. Food Funct [Internet]. 2016 [cited 2017 Dec 25];7(3):1251–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26797090.

  67. Sato A, Watanabe K, Kaneko K, Murakami Y, Ishido M, Miyasaka N, et al. The effect of synthetic retinoid, Am80, on T helper cell development and antibody production in murine collagen-induced arthritis. Mod Rheumatol [Internet]. 2010;20(3):244–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20039185.

    Article  CAS  Google Scholar 

  68. Kuwabara K, Shudo K, Hori Y. Novel synthetic retinoic acid inhibits rat collagen arthritis and differentially affects serum immunoglobulin subclass levels. FEBS Lett. 1996;378(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  69. Nozaki Y, Yamagata T, Yoo B-S, Sugiyama M, Ikoma S, Kinoshita K, et al. The beneficial effects of treatment with all-trans-retinoic acid plus corticosteroid on autoimmune nephritis in NZB/WF mice. Clin Exp Immunol [Internet]. 2005;139(1):74–83. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1809273&tool=pmcentrez&rendertype=abstract.

    Article  CAS  PubMed Central  Google Scholar 

  70. Miyabe C, Miyabe Y, Miura NN, Takahashi K, Terashima Y, Toda E, et al. Am80, a retinoic acid receptor agonist, ameliorates murine vasculitis through the suppression of neutrophil migration and activation. Arthritis Rheum. 2013;65(2):503–12.

    Article  CAS  PubMed  Google Scholar 

  71. Ohyanagi N, Ishido M, Suzuki F, Kaneko K, Kubota T, Miyasaka N, et al. Retinoid ameliorates experimental autoimmune myositis, with modulation of th cell differentiation and antibody production in vivo. Arthritis Rheum. 2009;60(10):3118–27.

    Article  CAS  PubMed  Google Scholar 

  72. Bird HA, Hill J, Sitton NG, Dixon JS, Wright V. A clinical and biochemical evaluation of etretinate in rheumatoid arthritis. Rheumatol Int [Internet]. 1988;8(2):55–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3041545.

    Article  CAS  Google Scholar 

  73. Gravallese EM, Handel ML, Coblyn J, Anderson RJ, Sperling RI, Karlson EW, et al. N-[4-hydroxyphenyl] retinamide in rheumatoid arthritis: a pilot study. Arthritis Rheum. 1996;39(6):1021–6.

    Article  CAS  PubMed  Google Scholar 

  74. Kinoshita K, Kishimoto K, Shimazu H, Nozaki Y, Sugiyama M, Ikoma S, et al. Successful treatment with retinoids in patients with lupus nephritis. Am J Kidney Dis [Internet]. 2010;55(2):344–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19628316.

    Article  CAS  Google Scholar 

  75. Ikeda T, Uede K, Furukawa F, Hashizume H. The Vitamin A derivative etretinate improves skin sclerosis in patients with systemic sclerosis [5]. J Dermatol Sci. 2004. p. 62–66.

    Article  CAS  PubMed  Google Scholar 

  76. Citak FE, Ezer U, Akkaya E, Ozbulbul N, Bahce M, Kurekci AE. All-trans-retinoic acid-induced myositis in a child with acute promyelocytic leukemia. Haematologica. 2006;91(8 Suppl).

    Google Scholar 

  77. Pecker LH, Tsai J, Angiolillo A. All-trans retinoic acid-induced inflammatory myositis in a patient with acute promyelocytic leukemia. Pediatr Radiol. 2014;44(8):1039–41.

    Article  PubMed  Google Scholar 

  78. Oliveira AC, Domingo-Domenech E, Arnan M, Gallardo D, Puig I, González-Barca E. All-trans retinoic acid-induced myositis in a case of acute promyelocytic leukaemia. Int J Lab Hematol [Internet]. 2008 [cited 2017 Dec 14];30(3):254–5. Available from: http://doi.wiley.com/10.1111/j.1751-553X.2007.00933.x

    Article  CAS  PubMed  Google Scholar 

  79. Kannan K, Khan HA, Jain R, Hussein SS, Dennison D. All-trans retinoic acid-induced myositis. Br J Haematol [Internet]. Blackwell Science Ltd; 2005;131(5):560. Available from: https://doi.org/10.1111/j.1365-2141.2005.05684.x

    Article  PubMed  Google Scholar 

  80. Chan KH, Yuen SLS, Joshua D. A case of all-trans retinoic acid-induced myositis in the treatment of acute promyelocytic leukaemia. Clin Lab Haematol. 2005;27(6):399–401.

    Article  CAS  PubMed  Google Scholar 

  81. Fabbiano F, Magrin S, Cangialosi C, Felice R, Mirto S, Pitrolo F. All-trans retinoic acid induced cardiac and skeletal myositis in induction therapy of acute promyelocytic leukaemia. Br J Haematol [Internet]. Blackwell Science Ltd; 2005;129(3):444–5. Available from: https://doi.org/10.1111/j.1365-2141.2005.05465.x

    Article  PubMed  Google Scholar 

  82. van Der Vliet HJ, Roberson AE, Hogan MC, Morales CE, Crader SC, Letendre L, et al. All-trans-retinoic acid-induced myositis: a description of two patients. Am J Hematol [Internet]. 2000 [cited 2017 Dec 13];63(2):94–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10629576.

  83. Musset L, Allenbach Y, Benveniste O, Boyer O, Bossuyt X, Bentow C, et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study. Autoimmun Rev. 2016:983–93.

    Article  CAS  PubMed  Google Scholar 

  84. Lo Y-C, Lin S-Y, Ulziijargal E, Chen S-Y, Chien R-C, Tzou Y-J, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms. 2012;14:357.

    Article  CAS  PubMed  Google Scholar 

  85. Lin S-Y, Chen Y-K, Yu H-T, Barseghyan GS, Asatiani MD, Wasser SP, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms [Internet]. 2013 [cited 2017 Dec 29];15(3):315–23. . Available from: http://www.ncbi.nlm.nih.gov/pubmed/23662618.

    Article  CAS  PubMed  Google Scholar 

  86. Endo A. A gift from nature: the birth of the statins. Nat Med. 2008:1050–2.

    Article  CAS  PubMed  Google Scholar 

  87. Furberg CD. Natural statins and stroke risk. Circulation [Internet]. 1999;99(2):185–8. Available from: http://circ.ahajournals.org/content/99/2/185.abstract.

    Article  CAS  Google Scholar 

  88. Sulaiman S, Khamis M, Nir S, Lelario F, Scrano L, Bufo SA, et al. Stability and removal of atorvastatin, rosuvastatin and simvastatin from wastewater. Environ Technol (United Kingdom). 2015;36(24):3232–42.

    CAS  Google Scholar 

  89. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A [Internet]. 2010;107(33):14691–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2930426&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  90. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    Article  PubMed  CAS  Google Scholar 

  91. Miles EA, Calder PC. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr [Internet]. 2012;107(Suppl):S171–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22591891.

    Article  CAS  Google Scholar 

  92. Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31(6):545–61.

    Article  CAS  PubMed  Google Scholar 

  93. de Pablo P, Chapple ILC, Buckley CD, Dietrich T. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol. 2009;5(4):218–24.

    Article  PubMed  Google Scholar 

  94. Fuggle NR, Smith TO, Kaul A, Sofat N. Hand to mouth: A systematic review and meta-analysis of the association between rheumatoid arthritis and periodontitis. Front Immunol. 2016;7(MAR).

    Google Scholar 

  95. AlmståhI A, Wikström M, Stenberg I, Jakobsson A, Fagerberg-Mohlin B. Oral microbiota associated with hyposalivation of different origins. Oral Microbiol Immunol [Internet]. 2003;18(1):1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12588452.

    Article  CAS  PubMed  Google Scholar 

  96. Leung KCM, Leung WK, McMillan AS. Supra-gingival microbiota in Sjogren’s syndrome. Clin Oral Investig. 2007;11(4):415–23.

    Article  CAS  PubMed  Google Scholar 

  97. Li M, Zou Y, Jiang Q, Jiang L, Yu Q, Ding X, et al. A preliminary study of the oral microbiota in Chinese patients with Sjögren’s syndrome. Arch Oral Biol. 2016;70:143–8.

    Article  PubMed  Google Scholar 

  98. De Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep 2016;6.

    Google Scholar 

  99. Seoudi N, Bergmeier LA, Drobniewski F, Paster B, Fortune F. The oral mucosal and salivary microbial community of behçet’s syndrome and recurrent aphthous stomatitis. J Oral Microbiol. 2015;7(1):1–9.

    Google Scholar 

  100. Coit P, Mumcu G, Ture-Ozdemir F, Unal AU, Alpar U, Bostanci N, et al. Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behçet’s disease. Clin Immunol. 2016;169:28–35.

    Article  CAS  PubMed  Google Scholar 

  101. Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheumatism. 2011. p. 3195–3198.

    Article  Google Scholar 

  102. Rosenbaum JT, Lin P, Asquith M, Costello ME, Kenna TJ, Brown MA. Does the microbiome play a causal role in spondyloarthritis? Clin Rheumatol. 2014;33(6):763–7.

    Article  PubMed  Google Scholar 

  103. Barranco C. Spondyloarthropathies: gut dysbiosis in ankylosing spondylitis. Nat Rev Rheumatol. 2015;11(1):1.

    Article  PubMed  Google Scholar 

  104. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015;67(3):686–91.

    Article  PubMed  Google Scholar 

  105. Lee Y-H, Bae S-C, Song G-G. Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: a meta-analysis. Arch Med Res [Internet]. 2012;43(5):356–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S018844091200166X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, K., Aggarwal, R. (2020). Dietary Considerations in Myositis. In: Aggarwal, R., Oddis, C. (eds) Managing Myositis. Springer, Cham. https://doi.org/10.1007/978-3-030-15820-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15820-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15819-4

  • Online ISBN: 978-3-030-15820-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics