Skip to main content

Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances?

  • Chapter
  • First Online:
Bioactive Lipids in Health and Disease

Abstract

The liver plays a capital role in the control of whole body energy homeostasis through the metabolization of dietary carbohydrates and lipids. However, under excess macronutrient uptake, those pathways overcharge nucleus-to-endoplasmic reticulum (ER) traffic pathways, leading to luminal overload of unfolded proteins which activates a series of adaptive signaling pathways known as unfolded protein response (UPR). The UPR is a central network mechanism for cellular stress adaptation, however far from a global nonspecific all-or-nothing response. Such a complex signaling network is able to display considerable specificity of responses, with activation of specific signaling branches trimmed for distinct types of stimuli. This makes the UPR a fundamental mechanism underlying metabolic processes and diseases, especially those related to lipid and carbohydrate metabolism. Thus, for a better understanding of the role of UPR on the physiopathology of lipid metabolism disorders, the concepts discussed along this chapter will demonstrate how several metabolic derangements activate UPR components and, in turn, how UPR triggers several metabolic adaptations through its component signaling proteins. This dual role of UPR on lipid metabolism will certainly foment the pursuit of an answer for the question: is UPR cause or consequence of lipid and lipoprotein metabolism disturbances?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40:14–21

    Article  CAS  PubMed  Google Scholar 

  2. Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3:a007526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ariyama H, Kono N, Matsuda S, Inoue T, Arai H (2010) Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem 285:22027–22035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arruda AP, Hotamisligil GS (2015) Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab 22:381–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291:H1411–H1420

    Article  CAS  PubMed  Google Scholar 

  6. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326

    Article  CAS  PubMed  Google Scholar 

  7. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX (2012) Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364:115–129

    Article  CAS  PubMed  Google Scholar 

  9. Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ (2010) CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 299:G236–G243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen YY, Sun LQ, Wang BA, Zou XM, Mu YM, Lu JM (2013) Palmitate induces autophagy in pancreatic beta-cells via endoplasmic reticulum stress and its downstream JNK pathway. Int J Mol Med 32:1401–1406

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z, Nowrangi D, Flores J (2018) IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic–ischemic brain injury in rats. J Neuroinflammation 15:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Choi SE, Lee YJ, Jang HJ, Lee KW, Kim YS, Jun HS, Kang SS, Chun J, Kang Y (2008) A chemical chaperone 4-PBA ameliorates palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS). Arch Biochem Biophys 475:109–114

    Article  CAS  PubMed  Google Scholar 

  13. Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti M, Mamou CB, Marcinkiewicz E, Yoshida M (2005) Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436:1166–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    Article  CAS  PubMed  Google Scholar 

  15. Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo E, Overbergh L, Mathieu C, Lupi R, Hai T, Herchuelz A, Marchetti P, Rutter GA, Eizirik DL, Cnop M (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 121:2308–2318

    Article  CAS  PubMed  Google Scholar 

  16. Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford ML, Delzenne NM, Francaux M, Baar K (2010) The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab 299:E695–E705

    Article  CAS  PubMed  Google Scholar 

  17. Deldicque L, Van Proeyen K, Francaux M, Hespel P (2011) The unfolded protein response in human skeletal muscle is not involved in the onset of glucose tolerance impairment induced by a fat-rich diet. Eur J Appl Physiol 111:1553–1558

    Article  CAS  PubMed  Google Scholar 

  18. Egnatchik RA, Leamy AK, Jacobson DA, Shiota M, Young JD (2014) ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab 3:544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flister KFT, Serra BA, França LM, Coêlho CFF, Dos Santos PC, Vale CC, Kajihara D, Debbas V, Laurindo FRM, De Andrade Paes AM (2018) Long-term exposure to high-sucrose diet downregulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 62:155–166

    Article  CAS  PubMed  Google Scholar 

  20. Franca LM, Freitas LN, Chagas VT, Coelho CF, Barroso WA, Costa GC, Silva LA, Debbas V, Laurindo FR, Paes AM (2014) Mechanisms underlying hypertriglyceridemia in rats with monosodium L-glutamate-induced obesity: evidence of XBP-1/PDI/MTP axis activation. Biochem Biophys Res Commun 443:725–730

    Article  CAS  PubMed  Google Scholar 

  21. Gardner BM, Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghemrawi R, Battaglia-Hsu SF, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cell 7:63

    Article  Google Scholar 

  23. Glimcher LH, Lee AH (2009) From sugar to fat: how the transcription factor XBP1 regulates hepatic lipogenesis. Ann N Y Acad Sci 1173(Suppl 1):E2–E9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, Klein S (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS (2016) The unfolded protein response in immunity and inflammation. Nat Rev Immunol 16:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halbleib K, Pesek K, Covino R, Hofbauer HF, Wunnicke D, Hanelt I, Hummer G, Ernst R (2017) Activation of the unfolded protein response by lipid Bilayer stress. Mol Cell 67:673–684. e678

    Article  CAS  PubMed  Google Scholar 

  27. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57:1329–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han J, Murthy R, Wood B, Song B, Wang S, Sun B, Malhi H, Kaufman R (2013) ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice. Diabetologia 56:911–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  30. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163

    Article  CAS  PubMed  Google Scholar 

  31. Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP, Das I, Wang R, Chen AC, Loudovaris T (2014) Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 20:1417

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, Kato T (2007) The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 282:34525–34534

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Sun S, Sha H, Liu Z, Yang L, Xue Z, Chen H, Qi L (2010) Emerging roles for XBP1, a sUPeR transcription factor. Gene Expr 15:13–25

    Article  CAS  PubMed  Google Scholar 

  34. Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  CAS  PubMed  Google Scholar 

  35. Herrema H, Zhou Y, Zhang D, Lee J, Salazar Hernandez MA, Shulman GI, Ozcan U (2016) XBP1s is an anti-lipogenic protein. J Biol Chem 291:17394–17404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    Article  CAS  PubMed  Google Scholar 

  37. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249

    Article  CAS  PubMed  Google Scholar 

  38. Ho N, Xu C, Thibault G (2018) From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 131

    Article  PubMed  CAS  Google Scholar 

  39. Hollien J (2013) Evolution of the unfolded protein response. Biochim Biophys Acta 1833:2458–2463

    Article  CAS  PubMed  Google Scholar 

  40. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hourihan JM, Moronetti Mazzeo LE, Fernandez-Cardenas LP, Blackwell TK (2016) Cysteine Sulfenylation directs IRE-1 to activate the SKN-1/Nrf2 antioxidant response. Mol Cell 63:553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huh WJ, Esen E, Geahlen JH, Bredemeyer AJ, Lee AH, Shi G, Konieczny SF, Glimcher LH, Mills JC (2010) XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139:2038–2049

    Article  CAS  PubMed  Google Scholar 

  43. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67

    Article  CAS  PubMed  Google Scholar 

  44. Iurlaro R, Munoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283:2640–2652

    Article  CAS  PubMed  Google Scholar 

  45. Iwakoshi NN, Lee A-H, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    Article  CAS  PubMed  Google Scholar 

  46. Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M, Hamaguchi M, Takai-Igarashi T, Nakai M, Miyamoto Y, Ogawa Y (2014) Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63:152–161

    Article  CAS  PubMed  Google Scholar 

  47. Jung TW, Choi KM (2016) Pharmacological modulators of endoplasmic reticulum stress in metabolic diseases. Int J Mol Sci 17:192

    Article  PubMed Central  CAS  Google Scholar 

  48. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferre P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407

    Article  CAS  PubMed  Google Scholar 

  50. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, Patterson BW, Horton JD, Mittendorfer B, Hotamisligil GS, Klein S (2010) Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59:1899–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    Article  CAS  PubMed  Google Scholar 

  52. Kim MS, Krawczyk SA, Doridot L, Fowler AJ, Wang JX, Trauger SA, Noh HL, Kang HJ, Meissen JK, Blatnik M, Kim JK, Lai M, Herman MA (2016) ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest 126:4372–4386

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lauressergues E, Bert E, Duriez P, Hum D, Majd Z, Staels B, Cussac D (2012) Does endoplasmic reticulum stress participate in APD-induced hepatic metabolic dysregulation? Neuropharmacology 62:784–796

    Article  CAS  PubMed  Google Scholar 

  54. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  CAS  PubMed  Google Scholar 

  55. Lee AH, Glimcher LH (2009) Intersection of the unfolded protein response and hepatic lipid metabolism. Cell Mol Life Sci 66:2835–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee A-H, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH (2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 24:4368–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee AH, Scapa EF, Cohen DE, Glimcher LH (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci 100:2432–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lerner AG, Upton J-P, Praveen P, Ghosh R, Nakagawa Y, Igbaria A, Shen S, Nguyen V, Backes BJ, Heiman M (2012) IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li H, Meng Q, Xiao F, Chen S, Du Y, Yu J, Wang C, Guo F (2011) ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem J 438:283–289

    Article  CAS  PubMed  Google Scholar 

  62. Lin JH, Li H, Zhang Y, Ron D, Walter P (2009) Divergent effects of PERK and IRE1 signaling on cell viability. PLoS One 4:e4170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Maiuolo J, Bulotta S, Verderio C, Benfante R, Borgese N (2011) Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proc Natl Acad Sci 108:7832–7837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marfella R, Di Filippo C, Portoghese M, Barbieri M, Ferraraccio F, Siniscalchi M, Cacciapuoti F, Rossi F, D'amico M, Paolisso G (2009) Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome. J Lipid Res 50:2314–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinon F, Chen X, Lee A-H, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mccullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moffitt JH, Fielding BA, Evershed R, Berstan R, Currie JM, Clark A (2005) Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia 48:1819–1829

    Article  CAS  PubMed  Google Scholar 

  69. Nabeebaccus AA, Zoccarato A, Hafstad AD, Santos CX, Aasum E, Brewer AC, Zhang M, Beretta M, Yin X, West JA, Schroder K, Griffin JL, Eykyn TR, Abel ED, Mayr M, Shah AM (2017) Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight 2

    Google Scholar 

  70. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri H-P, Ciavarella N, Kaufman RJ (1998) Mutations in the ER–Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93:61–70

    Article  CAS  PubMed  Google Scholar 

  72. Nielsen LB, Perko M, Arendrup H, Andersen CB (2002) Microsomal triglyceride transfer protein gene expression and triglyceride accumulation in hypoxic human hearts. Arterioscler Thromb Vasc Biol 22:1489–1494

    Article  CAS  PubMed  Google Scholar 

  73. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D (2008) Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 7:520–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  CAS  Google Scholar 

  76. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E, Davidson MM, Michalik L, Wahli W, Vazquez-Carrera M (2014) PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol 174:110–118

    Article  PubMed  Google Scholar 

  77. Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U (2010) The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 16:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perman JC, Bostrom P, Lindbom M, Lidberg U, Stahlman M, Hagg D, Lindskog H, Scharin Tang M, Omerovic E, Mattsson Hulten L, Jeppsson A, Petursson P, Herlitz J, Olivecrona G, Strickland DK, Ekroos K, Olofsson SO, Boren J (2011) The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest 121:2625–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peter A, Weigert C, Staiger H, Machicao F, Schick F, Machann J, Stefan N, Thamer C, Haring HU, Schleicher E (2009) Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes 58:1757–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petremand J, Puyal J, Chatton JY, Duprez J, Allagnat F, Frias M, James RW, Waeber G, Jonas JC, Widmann C (2012) HDLs protect pancreatic beta-cells against ER stress by restoring protein folding and trafficking. Diabetes 61:1100–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pfaffenbach KT, Lee AS (2011) The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 23:150–156

    Article  CAS  PubMed  Google Scholar 

  82. Pinto BA, Melo TM, Flister KF, Franca LM, Kajihara D, Tanaka LY, Laurindo FR, Paes AM (2016) Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats. Metab Brain Dis 31:917–927

    Article  CAS  PubMed  Google Scholar 

  83. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, Sanyal AJ (2008) Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134:568–576

    Article  CAS  PubMed  Google Scholar 

  84. Puthalakath H, O'reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, Mckimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  CAS  PubMed  Google Scholar 

  85. Rozpedek W, Markiewicz L, Alan Diehl J, Pytel D, Majsterek I (2015) Unfolded protein response and PERK Kinase as a new therapeutic target in the pathogenesis of Alzheimer’s disease. Curr Med Chem 22:3169–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rutkowski DT, Hegde RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189:783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28

    Article  CAS  PubMed  Google Scholar 

  88. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, Wang J, Yau GD, Kaufman RJ (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15:829–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  90. Sarvani C, Sireesh D, Ramkumar KM (2017) Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol Res 119:412–421

    Article  CAS  PubMed  Google Scholar 

  91. Shen J, Prywes R (2005) ER stress signaling by regulated proteolysis of ATF6. Methods 35:382–389

    Article  CAS  PubMed  Google Scholar 

  92. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439

    Article  CAS  PubMed  Google Scholar 

  93. Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A, Taniguchi T (2006) Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J 25:4952–4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH (2012) Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab 16:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Softic S, Gupta MK, Wang GX, Fujisaka S, O'neill BT, Rao TN, Willoughby J, Harbison C, Fitzgerald K, Ilkayeva O, Newgard CB, Cohen DE, Kahn CR (2017) Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest 127:4059–4074

    Article  PubMed  PubMed Central  Google Scholar 

  96. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118:3378–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5:a008706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 7:e45078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tufanli O, Telkoparan Akillilar P, Acosta-Alvear D, Kocaturk B, Onat UI, Hamid SM, Cimen I, Walter P, Weber C, Erbay E (2017) Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A 114:E1395–E1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  101. Urra H, Dufey E, Avril T, Chevet E, Hetz C (2016) Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2:252–262

    Article  PubMed  Google Scholar 

  102. Usui M, Yamaguchi S, Tanji Y, Tominaga R, Ishigaki Y, Fukumoto M, Katagiri H, Mori K, Oka Y, Ishihara H (2012) Atf6alpha-null mice are glucose intolerant due to pancreatic beta-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61:1118–1128

    Article  CAS  PubMed  Google Scholar 

  103. Volmer R, Van Der Ploeg K, Ron D (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A 110:4628–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wagner M, Moore DD (2011) Endoplasmic reticulum stress and glucose homeostasis. Curr Opini Clin Nutr Metab Care 14:367–373

    Article  CAS  Google Scholar 

  105. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335

    Article  CAS  PubMed  Google Scholar 

  106. Wang D, Wei Y, Pagliassotti MJ (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147:943–951

    Article  CAS  PubMed  Google Scholar 

  107. Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, Davidson NO, Kaufman RJ (2012) IRE1alpha-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 16:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 36:329–337

    Article  CAS  PubMed  Google Scholar 

  109. Xiao G, Zhang T, Yu S, Lee S, Calabuig-Navarro V, Yamauchi J, Ringquist S, Dong HH (2013) ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J Biol Chem 288:25350–25361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamamoto K, Takahara K, Oyadomari S, Okada T, Sato T, Harada A, Mori K (2010) Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol Biol Cell 21:2975–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R, Huang T, Nakajima S, Yao J, Paton AW, Paton JC, Kitamura M (2009) Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol 183:1480–1487

    Article  CAS  PubMed  Google Scholar 

  112. Yang J, Yao S (2015) JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with beclin 1. Int J Mol Sci 16:25744–25758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu Q, Zhao B, Gui J, Katlinski KV, Brice A, Gao Y, Li C, Kushner JA, Koumenis C, Diehl JA, Fuchs SY (2015) Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc Natl Acad Sci U S A 112:15420–15425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeng L, Lu M, Mori K, Luo S, Lee AS, Zhu Y, Shyy JY (2004) ATF6 modulates SREBP2-mediated lipogenesis. EMBO J 23:950–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124:587–599

    Article  CAS  PubMed  Google Scholar 

  117. Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P (2011a) Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res 10:4757–4768

    Article  CAS  PubMed  Google Scholar 

  118. Zhang K, Wang S, Malhotra J, Hassler JR, Back SH, Wang G, Chang L, Xu W, Miao H, Leonardi R, Chen YE, Jackowski S, Kaufman RJ (2011b) The unfolded protein response transducer IRE1alpha prevents ER stress-induced hepatic steatosis. EMBO J 30:1357–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang C, Chen X, Zhu RM, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji YL, Chen YH, Meng XH, Wei W, Xu DX (2012a) Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett 212:229–240

    Article  CAS  PubMed  Google Scholar 

  120. Zhang C, Wang G, Zheng Z, Maddipati KR, Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ, Zhang K (2012b) Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 55:1070–1082

    Article  CAS  PubMed  Google Scholar 

  121. Zhao Y, Yan Y, Zhao Z, Li S, Yin J (2015) The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res Bull 111:27–35

    Article  CAS  PubMed  Google Scholar 

  122. Zong W-X, Li C, Hatzivassiliou G, Lindsten T, Yu Q-C, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marcus de Andrade Paes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinto, B.A.S., França, L.M., Laurindo, F.R.M., Paes, A.M.d.A. (2019). Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances?. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_5

Download citation

Publish with us

Policies and ethics