Skip to main content

Pre- and Post-Fire Comparison of Forest Areas in 3D

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

A satellite processing platform for high resolution forest assessment (FORSAT) was developed. It generates the digital surface models (DSMs) of the forest canopy by advanced processing of the very-high resolution (VHR) optical satellite imagery and automatically matches the pre- and post-fire DSMs for 3D change detection. The FORSAT software system can perform the following tasks: pre-processing, point measurement, orientation, quasi-epipolar image generation, image matching, DSM extraction, orthoimage generation, photogrammetric restitution either in mono-plotting mode or in stereo models, 3D surface matching, co-registration, comparison and change detection. It can thoroughly calculate the planimetric and volumetric changes between the epochs. It supports most of the VHR optical imagery commonly used for civil applications. Capabilities of FORSAT have been tested in two real forest fire cases, where the burned areas are located in Cyprus and Austria. The geometric characteristics of burned forest areas have been identified both in 2D plane and 3D volume dimensions, using pre- and post-fire optical image data from different sensors. The test studies showed that FORSAT is an operational software capable of providing spatial (3D) and temporal (4D) information for monitoring of forest fire areas and sustainable forest management. Beyond the wildfires, it can be used for many other forest information needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdollahi M, Islam T, Gupta A, Hassan QK (2018) An advanced forest fire danger forecasting system: integration of remote sensing and historical sources of ignition data. Remote Sens 10:923. https://doi.org/10.3390/rs10060923

    Article  Google Scholar 

  • Ackermann F, Hahn M (1991) Image pyramids for digital photogrammetry. In: Ebner H, Fritsch D, Heipke C (eds) Digital photogrammetric systems. Wichmann, Karlsruhe, pp 43–58

    Google Scholar 

  • Addison P, Oommen T (2018) Utilizing satellite radar remote sensing for burn severity estimation. Int J Appl Earth Obs Geoinf 73:292–299

    Article  Google Scholar 

  • Adelabu SA, Adepoju KA, Mofokeng OD (2018) Estimation of fire potential index in mountainous protected region using remote sensing. Geocarto International. https://doi.org/10.1080/10106049.2018.1499818

  • Akca D, Gruen A (2005) Recent advances in least squares 3D surface matching. In: Gruen A, Kahmen H (eds) Proceedings of the optical 3-D measurement techniques VII, Vienna, Austria, 3–5 October 2005, vol. II, pp 197–206

    Google Scholar 

  • Akca D, Gruen A, Alkis Z, Demir N, Breuckmann B, Erduyan I, Nadir E (2006) 3D modeling of the Weary Herakles statue with a coded structured light system. Int Arch Photogramm Remote Sens Spat Inf Sci 36(5):14–19

    Google Scholar 

  • Akca D (2007) Least Squares 3D surface matching. Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr. 92, p 78. https://doi.org/10.3929/ethz-a-005461765

  • Akca D, Gruen A (2007) Generalized Least Squares multiple 3D surface matching. Int Archives Photogramm Remote Sens Spat Inf Sci 36(3/W52):1–7

    Google Scholar 

  • Akca D, Remondino F, Novàk D, Hanusch T, Schrotter G, Gruen A (2007) Performance evaluation of a coded structured light system for cultural heritage applications. Proc. of SPIE-IS&T Electronic Imaging, Videometrics IX, San Jose, California, January 29–30. SPIE 6491:64910V-1–12

    Google Scholar 

  • Akca D (2010) Co-registration of surfaces by 3D Least Squares matching. Photogramm Eng Remote Sens 76(3):307–318

    Article  Google Scholar 

  • Akca D, Freeman M, Sargent I, Gruen A (2010) Quality assessment of 3D building data. Photogram Rec 25(132):339–355

    Article  Google Scholar 

  • Akca D (2012) 3D modeling of cultural heritage objects with a structured light system. Mediterr Archaeol Archaeom 12(1):139–152

    Google Scholar 

  • Akca D, Seybold HJ (2016) Monitoring of a laboratory-scale inland-delta formation using a structured-light system. Photogram Rec 31(154):121–142

    Article  Google Scholar 

  • Akca D, Stylianidis E, Smagas K, Hofer M, Poli D, Gruen A, Martin VS, Altan O, Walli A, Jimeno E, Garcia A (2016) Volumetric forest change detection through VHR satellite imagery. Int Archives Photogramm Remote Sens Spat Inf Sci 41(B8):1213–1220

    Article  Google Scholar 

  • Almeida-Filho R, Rosenqvist A, Shimabukuro YE, dos Santos JR (2005) Evaluation and perspectives of using multitemporal L-band SAR data to monitor deforestation in the Brazilian Amazonia. IEEE Geosci Remote Sens Lett 2(4):409–412

    Article  Google Scholar 

  • Almeida-Filho R, Rosenqvist A, Shimabukuro YE, Silva-Gomez R (2007) Detection deforestation with multitemporal L-band SAR imagery: a case study in western Brazilian Amazonia. Int J Remote Sens 28(6):1383–1390

    Article  Google Scholar 

  • Almeida-Filho R, Shimabukuro YE, Rosenqvist A, Sanchez GA (2009) Using dual-polarized ALOS PALSAR data for detecting new fronts of deforestation in the Brazilian Amazonia. Int J Remote Sens 30(14):3735–3743

    Article  Google Scholar 

  • Altan O, Backhaus R, Boccardo P, van Manen N, Tonolo FG, Trinder J, Zlatanova S (2013). The value of geoinformation for disaster and risk management (VALID), Joint Board of Geospatial Information Society (JB GIS), Copenhagen, ISBN 97887-90907-88-4

    Google Scholar 

  • Alves DS (2002) Space-time dynamics of deforestation in Brazilian Amazonia. Int J Remote Sens 23(14):2903–2908

    Article  Google Scholar 

  • Anderson LO, Shimabukuro YE, Defries RS, Morton D (2005) Assessment of deforestation in near real time over the Brazilian Amazon using multitemporal fraction images derived from Terra MODIS. IEEE Geosci Remote Sens Lett 2(3):315–318

    Article  Google Scholar 

  • Baillarin F, Souza C, Gonzales G (2008) Use of Formosat-2 satellite imagery to detect near real time deforestation in Amazonia. IEEE International Geoscience & Remote Sensing Symposium (IGARSS’2008). https://doi.org/10.1109/IGARSS.2008.4779481

  • Baltsavias E, Kocaman S, Akca D, Wolff K (2007) Geometric and radiometric investigations of Cartosat-1 Data. ISPRS Workshop on high resolution earth imaging for geospatial information, Hannover, Germany, 29 May–1 June 2007

    Google Scholar 

  • Bodart C, Eva H, Beuchle R et al (2011) Pre-processing of a sample of multi-scene and multi-date Landsat imagery used to monitor forest cover changes over the tropics. ISPRS J Photogramm Remote Sens 66:555–563

    Article  Google Scholar 

  • Burnett JD, Wing MG (2018) A low-cost near-infrared digital camera for fire detection and monitoring. Int J Remote Sens 39(3):741–753

    Article  Google Scholar 

  • Cabral AIR, Silva S, Silva PC, Vanneschi L, Vasconcelos MJ (2018) Burned are estimations derived from Landsat ETM+ and OLI data: comparing Genetic Programming with Maximum Likelihood and classification and regression trees. ISPRS J Photogramm Remote Sens 142:94–105

    Article  Google Scholar 

  • Cailliez F (1992) Forest volume estimation and yield prediction. FAO For Paper 22(1):98

    Google Scholar 

  • Camaro W, Steffenino S, Vigna R (2013) Fire risk mapping and fire detection and monitoring. In: The value of Geoinformation for disaster and risk management (VALID), joint board of geospatial information society (JB GIS), Copenhagen, ISBN 97887-90907-88-4

    Google Scholar 

  • Colson D, Petropoulos GP, Ferentinos KP (2018) Exploring the potential of Sentinels-1 & 2 of the Copernicus Mission in support of rapid and cost-effective wildfire assessment. Int J Appl Earth Obs Geoinf 73:262–276

    Article  Google Scholar 

  • Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F (2018) Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environ Earth Sci 77:632. https://doi.org/10.1007/s12665-018-7817-4

    Article  Google Scholar 

  • Di Maio Mantovani AC, Setzer AW (1997) Deforestation detection in the Amazon with an AVHRR-based system. Int J Remote Sens 18(2):273–286

    Article  Google Scholar 

  • Ebner H, Strunz G (1988) Combined point determination using digital terrain models as control information. Int Archives Photogramm Remote Sens 27(B11/3):578–587

    Google Scholar 

  • Edwards AC, Russell-Smith J, Maier SW (2018) A comparison and validation of satellite-derived fire severity mapping techniques in fire prone north Australian savannas: extreme fires and tree stem mortality. Remote Sens Environ 206:287–299

    Article  Google Scholar 

  • Eva H, Carboni S et al (2010) Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery. ISPRS J Photogramm Remote Sens 65:191–197

    Article  Google Scholar 

  • Fernandez-Garcia V, Santamarta M, Fernandez-Manso A, Quintano C, Marcos E, Calvo L (2018) Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens Environ 206:205–217

    Article  Google Scholar 

  • Filizzola C, Corrado R, Marchese F, Mazzeo G, Paciello R, Pergola N, Tramutoli V (2016) RST-FIRES, an exportable algorithm for early-fire detection and monitoring: description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens Environ 186:196–216

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Garcia-Lazaro JR, Moreno-Ruiz JA, Riano D, Arbelo M (2018) Estimation of burned area in the northeastern Siberian Boreal Forests from a long-term data record (LTDR) 1982-2015 time series. Remote Sens 10:940. https://doi.org/10.3390/rs10060940

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282

    Article  Google Scholar 

  • Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithms and fire products. Remote Sens Environ 178:31–41

    Article  Google Scholar 

  • Grodecki J, Dial G (2003) Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials. Photogramm Eng Remote Sens 69(1):59–68

    Article  Google Scholar 

  • Gruen A, Poli D, Zhang L (2004) SPOT-5/HRS stereo images orientation and automated DSM generation. Int Archives Photogramm Remote Sens Spat Inf Sci 35(1):421–432

    Google Scholar 

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174

    Article  Google Scholar 

  • GW website (2018) Insitu ScanEagle UAS helps suppress wildfires. https://www.geomatics-world.co.uk/content/news/insitu-scaneagle-uas-helps-suppress-wildfires. Accessed 09 Oct 2018

  • Haboudane D, Bahri EM (2008) Deforestation detection and monitoring in cedar forests of the Moroccan Middle-Atlas Mountains. IEEE International Geoscience & Remote Sensing Symposium (IGARSS’2007). https://doi.org/10.1109/IGARSS.2007.4423809

  • Heipke C, Mayer H, Wiedemann C, Jamet O (1997) Evaluation of automatic road extraction. Int Archives Photogramm Remote Sens 32(3–2W3):47–56

    Google Scholar 

  • Ichii K, Maruyama M, Yamaguchi Y (2003) Multi-temporal analysis of deforestation in Rondonia state in Brazil using Landsat MSS, ETM+ and NOAA AVHRR imagery and its relationship to changes in the local hydrological environment. Int J Remote Sens 24(22):4467–4479

    Article  Google Scholar 

  • Isoguchi O, Shimada M, Uryu Y (2009) A preliminary study on deforestation monitoring in Sumatra island by PALSAR. IEEE International Geoscience & Remote Sensing Symposium (IGARSS’2009). https://doi.org/10.1109/IGARSS.2009.5417928

  • Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP Morisette JT (2002a) An overview of MODIS Land data processing and product status. Remote Sensing of Environment 83:3–15

    Article  Google Scholar 

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002b) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens 65:581–590

    Article  Google Scholar 

  • Krasovskii A, Khabarov N, Pirker J, Kraxner F, Yowargana P, Schepaschenko D, Obersteiner M (2018) Forests 9:437. https://doi.org/10.3390/f9070437

    Article  Google Scholar 

  • Koltunov A, Ustin SL, Quayle B, Schwind B, Ambrosia VG, Li W (2016) The development and first validation of the GOES Early Fire Detection (GOES-EFD) algorithm. Remote Sens Environ 184:436–453

    Article  Google Scholar 

  • Lee H (2008) Mapping deforestation and age of evergreen trees by applying a binary coding method to time-series Landsat November images. IEEE Trans Geosci Remote Sens 46(11):3926–3936

    Article  Google Scholar 

  • Li X, Zhang H, Yang G, Ding Y, Zhao J (2018) Post-fire vegetation succession and surface energy fluxes derived from remote sensing. Remote Sens 10:1000. https://doi.org/10.3390/rs10071000

    Article  Google Scholar 

  • Lin Z, Chen F, Niu Z, Li B, Yu B, Jia H, Zhang M (2018) An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data. Remote Sens Environ 211:376–387

    Article  Google Scholar 

  • Mancini LD, Elia M, Barbati A, Salvati L, Corona P, Lafortezza R, Sanesi G (2018) Are wildfires knocking on the built-up areas door? Forests 9:234. https://doi.org/10.3390/f9050234

    Article  Google Scholar 

  • Mayr MJ, Vanselow KA, Samimi C (2018) Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol Ind 91:324–337

    Article  Google Scholar 

  • McCarley TR, Kolden CA, Vaillant NM, Hudak AT, Smith AMS, Wing BM, Kellogg BS, Kreitler J (2017) Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sens Environ 191:419–432

    Article  Google Scholar 

  • McKeown DM, Bulwinkle T, Cochran S, Harvey W, McGlone C, Shufelt JA (2000) Performance evaluation for automatic feature extraction. Int Archives Photogramm Remote Sens 33(B2):379–394

    Google Scholar 

  • Meng R, Wu J, Schwager KL, Zhao F, Dennison PE, Cook BD, Brewster K, Green TM, Serbin SP (2017) Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens Environ 191:95–109

    Article  Google Scholar 

  • Millington AC, Velez-Liendo XM, Bradley AV (2003) Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote Sens 57:289–299

    Article  Google Scholar 

  • Mitchell HL, Chadwick RG (1999) Digital photogrammetric concepts applied to surface deformation studies. Geomatica 53(4):405–414

    Google Scholar 

  • Mondal P, Southworth J (2010) Protection vs. commercial management: spatial and temporal analysis of land cover changes in the tropical forests of Central India. For Ecol Manage 259:1009–1017

    Article  Google Scholar 

  • Mora B, Wulder MA, White JC, Hobart G (2013) Modeling stand height, volume, and biomass from very high spatial resolution satellite imagery and samples of airborne LiDAR. Remote Sens 5:2308–2326

    Article  Google Scholar 

  • Navarro G, Caballero I, Silva G, Parra PC, Vazquez A, Caldeira R (2017) Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int J Appl Earth Observ Geoinf 58:97–106

    Article  Google Scholar 

  • Nyongesa KW, Vacik H (2018) Fire management in Mount Kenya: a case study of Gathiuru forest station. Forests 9:481. https://doi.org/10.3390/f9080481

    Article  Google Scholar 

  • Pahari K, Murai S (1999) Modelling for prediction of global deforestation based on the growth of human population. ISPRS J Photogramm Remote Sens 54:317–324

    Article  Google Scholar 

  • Pasquarella VJ, Holden CE, Kaufman L, Woodcock CE (2016) From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state & dynamics. Remote Sens Ecol Conserv 2(3):152–170. https://doi.org/10.1002/rse2.24

    Article  Google Scholar 

  • Poli D (2005) Modelling of Spaceborne Linear Array Sensors. Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr. 85, p 217

    Google Scholar 

  • Poli D (2007) A Rigorous Model for Spaceborne Linear Array Sensors. Photogramm Eng Remote Sens 73(2):187–196

    Article  Google Scholar 

  • Ramo R, Garcia M, Rodriguez D, Chuvieco E (2018) A data mining approach for global burning area mapping. Int J Appl Earth Observ Geoinf 73:39–51

    Article  Google Scholar 

  • Remondino F (2011) Heritage recording and 3D modelling with photogrammetry and 3D scanning. Remote Sensing 3:1104–1138

    Article  Google Scholar 

  • Rosenholm D, Torlegard K (1988) Three-dimensional absolute orientation of stereo models using digital elevation models. Photogramm Eng Remote Sens 54(10):1385–1389

    Google Scholar 

  • Rutzinger M, Rottensteiner F, Pfeifer N (2009) A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J Sel Topics Appl Earth Observ Remote Sens 2(1):11–20

    Article  Google Scholar 

  • Ryu JH, Han KS, Hong S, Park NW, Lee YW, Cho J (2018) Satellite-based evaluation of the post-fire recovery process from the worst forest case in South Korea. Remote Sens 10:918. https://doi.org/10.3390/rs10060918

    Article  Google Scholar 

  • Santos JR, Mura JC, Paradella WP, Dutra LV, Goncalves FG (2008) Mapping recent deforestation in the Brazilian Amazon using simulated L-band MAPSAR images. Int J Remote Sens 29(16):4879–4884

    Article  Google Scholar 

  • Schanz D, Huhn F, Schroeder A (2018) Large-scale volumetric flow measurement of a thermal plume using Lagrangian Particle Tracking (Shake-The-Box). In: Raffel M et al (eds) Particle Image Velocimetry, Springer, 606–610. https://doi.org/10.1007/978-3-319-68852-7_18

    Chapter  Google Scholar 

  • Schroeder W, Oliva P, Giglio L, Csiszar IA (2014) The new VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens Environ 143:85–96

    Article  Google Scholar 

  • Sefercik UG, Alkan M, Buyuksalih G, Jacobsen K (2013) Generation and validation of high-resolution DEMs from Worldview-2 stereo data. Photogramm Rec 28(144):362–374

    Article  Google Scholar 

  • Shufelt JA (1999) Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans Pattern Anal Mach Intell 21(4):311–326

    Article  Google Scholar 

  • Silva Junior CHL, Aragao LEOC, Fonseca MG, Almeida CT, Vedovato LB, Anderson LO (2018) Deforestation-induced fragmentation increases forest fire occurrence in Central Brazilian Amazonia. Forests 9:305. https://doi.org/10.3390/f9060305

    Article  Google Scholar 

  • Solberg S, Astrup R, Weydahl DJ (2013) Detection of forest clear-cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR data. Remote Sensing 5:5449–5462

    Article  Google Scholar 

  • Soto-Berelov M, Jones SD, Clarke E, Reddy S, Gupta V, Felipe MLC (2018) Assessing two large area burnt area products across Australian Southern Forests. Int J Remote Sens 39(3):879–905

    Article  Google Scholar 

  • Souza CM, Siqueira JV, Sales MH et al (2013) Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 5:5493–5513

    Article  Google Scholar 

  • Sun P, Zhang Y (2018) A probabilistic method predicting forest fire occurrence combining firebrands and the weather-fuel complex in the northern part of the Daxinganling region. China For 9:428. https://doi.org/10.3390/f9070428

    Article  Google Scholar 

  • Svancara LK, Scott JM, Loveland TR, Pidgorna AB (2009) Assessing the landscape context and conversion risk of protected areas using satellite data products. Remote Sens Environ 113:1357–1369

    Article  Google Scholar 

  • Tao CV, Hu Y (2001) A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogramm Eng Remote Sens 66(12):1477–1485

    Google Scholar 

  • Tian L, Wang J, Zhou H, Wang J (2018) Automatic detection of forest fire disturbance based on dynamic modelling from MODIS time-series observations. Int J Remote Sens 39(12):3801–3815

    Article  Google Scholar 

  • Toschi I, Remondino F, Kellenberger T, Streilein A (2017) A survey of geomatics solutions for the rapid mapping of natural hazards. Photogramm Eng Remote Sens 83(12):843–859

    Article  Google Scholar 

  • Toschi I, Allocca M, Remondino F (2018) Geomatics mapping of natural hazards: overview and experiences. Int Archives Photogramm Remote Sens Spat Inf Sci 42(3/W4):505–512

    Google Scholar 

  • Tucker CJ, Townshend JRG (2000) Strategies for monitoring tropical deforestation using satellite data. Int J Remote Sens 21(6):1461–1471

    Article  Google Scholar 

  • Vega SGD, de las Heras J, Moya D (2018) Post-fire regeneration and diversity response to burn severity in pinus halepensis Mill. forests. Forests 9:299. https://doi.org/10.3390/f9060299

    Article  Google Scholar 

  • Wallis R (1976) An approach to the space variant restoration and enhancement of images. In: Proc of Symposium on Current Mathematical Problems in Image Science, Monterey, CA

    Google Scholar 

  • Wheeler D, Guzder-Williams B, Petersen R, Thau D (2018) Rapid MODIS-based detection of tree cover loss. Int J Appl Earth Obs Geoinf 69:78–87

    Article  Google Scholar 

  • Xu C, Manley B, Morgenroth J (2018) Evaluation of modelling approaches in predicting forest volume and stand age for small-scale plantations forests in New Zealand with RapidEye and LiDAR. Int J Appl Earth Observ Geoinf 73:386–396

    Article  Google Scholar 

  • Yu B, Chen F, Li B, Wang L, Wu M (2017) Fire risk prediction using remote sensed products: a case of Cambodia. Photogrammetric Engineering and Remote Sensing 83(1):19–25

    Article  Google Scholar 

  • Zhang L, Gruen A (2004) Automatic DSM generation from linear array imagery data. Int Archives Photogramm Remote Sens Spat Inf Sci 35(B3):128–133

    Google Scholar 

  • Zhang L (2005) Automatic Digital Surface Model (DSM) Generation from Linear array Images. Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr.88, p 219. ISBN 3-906467-55-4

    Google Scholar 

  • Zhang L, Gruen A (2006) Multi-image matching for DSM generation from IKONOS imagery. ISPRS J Photogramm Remote Sens 60:195–211

    Article  Google Scholar 

  • Zhang L, Kocaman S, Akca D, Kornus W, Baltsavias E (2006) Test and performance evaluation of DMC images and new methods for their processing. In: Proceedings ISPRS commission I symposium, Paris, 3–6 Jul 2006

    Google Scholar 

  • Zhang Y, Song C, Band LE, Sun G, Li J (2017) Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens Environ 191:145–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devrim Akca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akca, D. et al. (2019). Pre- and Post-Fire Comparison of Forest Areas in 3D. In: Altan, O., Chandra, M., Sunar, F., Tanzi, T. (eds) Intelligent Systems for Crisis Management. Gi4DM 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-030-05330-7_11

Download citation

Publish with us

Policies and ethics