Skip to main content

Perspectives for 5G Network Sharing for Mobile Small Cells

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2018)

Abstract

Ensuring enough network resources for all emerging 5G mobile services, with the advent of 5G will be vital. Network sharing is seen as one of the adopted technologies of 5G, to enhance resource utilization by optimizing resource usage among different operators. A key enabler for network sharing is virtualization. While virtualization of the core network has already been implemented in nowadays mobile networks, the virtualization of the Radio Access Network (RAN) is still an emerging research topic that is currently investigated with the aim of exploiting a fully virtualized mobile network. In this paper, we examine a 5G RAN perspective architecture that has the merit of being a Multi-RAT, Multi band V-RAN and using end user equipment as mobile small cells. We highlight its advantages, and identify how virtualization of RAN can lead to efficient RAN resource sharing. Finally, we anticipate how some virtualization functionalities should be extended to manage the particularity of the perspective RAN architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olwal, T.O., Djouani, K., Kurien, A.M.: A survey of resource management toward 5G radio access networks. IEEE Commun. Surv. Tutor. 18(3), 1656–1686 (2016)

    Article  Google Scholar 

  2. Liang, C., Yu, F.R.: Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 17(1), 358–380 (2015)

    Article  Google Scholar 

  3. Bhushan, N., et al.: Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52(2), 82–89 (2014)

    Article  Google Scholar 

  4. Small cell definition - small cell forum. http://www.smallcellforum.org/about/about-small-cells/small-cell-definition/

  5. Series, M.: IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond (2015)

    Google Scholar 

  6. Demestichas, P., et al.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

    Article  Google Scholar 

  7. Chen, S., Zhao, J.: The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)

    Article  Google Scholar 

  8. Andrews, J.G., et al.: What will 5G be? IEEE J. Select. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  9. Mogensen, P., et al.: 5G small cell optimized radio design. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 111–116. IEEE (2013)

    Google Scholar 

  10. Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of WI-FI and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Mag. 53(3), 158–164 (2015)

    Article  Google Scholar 

  11. Hoydis, J., Ten Brink, S., Debbah, M.: Massive mimo in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Select. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  12. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive mimo for next generation wireless systems. IEEE communications Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  13. Dehos, C., González, J.L., De Domenico, A., Ktenas, D., Dussopt, L.: Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Commun. Mag. 52(9), 88–95 (2014)

    Article  Google Scholar 

  14. Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., Song, H.: Automated small-cell deployment for heterogeneous cellular networks. IEEE Commun. Mag. 51(5), 46–53 (2013)

    Article  Google Scholar 

  15. Cheng, H.T., Callard, A., Senarath, G., Zhang, H., Zhu, P.: Step-wise optimal low power node deployment in LTE heterogeneous networks. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–4. IEEE (2012)

    Google Scholar 

  16. Sui, Y., Vihriala, J., Papadogiannis, A., Sternad, M., Yang, W., Svensson, T.: Moving cells: a promising solution to boost performance for vehicular users. IEEE Commun. Mag. 51(6), 62–68 (2013)

    Article  Google Scholar 

  17. Feteiha, M.F., Qutqut, M.H., Hassanein, H.S.: Outage probability analysis of mobile small cells over LTE-a networks. In: 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1045–1050. IEEE (2014)

    Google Scholar 

  18. Feteiha, M.F., Qutqut, M.H., Hassanein, H.S.: Pairwise error probability evaluation of cooperative mobile femtocells. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 4705–4710. IEEE (2013)

    Google Scholar 

  19. Jaziri, A., Nasri, R., Chahed, T.: Offloading traffic hotspots using moving small cells. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

    Google Scholar 

  20. Chou, S.F., Chiu, T.C., Yu, Y.J., Pang, A.C.: Mobile small cell deployment for next generation cellular networks. In: Global Communications Conference (GLOBECOM), pp. 4852–4857. IEEE (2014)

    Google Scholar 

  21. Kwon, Y.M., Shah, S.T., Shin, J., Park, A.S., Chung, M.Y.: Performance evaluation of moving small-cell network with proactive cache. Mobile Information Systems 2016 (2016)

    Google Scholar 

  22. Jangsher, S., Li, V.O.: Resource allocation in cellular networks with moving small cells with probabilistic mobility. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1701–1705. IEEE (2014)

    Google Scholar 

  23. Jaziri, A., Nasri, R., Chahed, T.: Traffic hotspot localization in 3G and 4G wireless networks using OMC metrics. In: 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 270–274. IEEE (2014)

    Google Scholar 

  24. Yassin, A., Awad, M., Nasser, Y.: On the hybrid localization in heterogeneous networks with lack of hearability. In: 2013 20th International Conference on Telecommunications (ICT), pp. 1–5. IEEE (2013)

    Google Scholar 

  25. Radwan, A., Huq, K.M.S., Mumtaz, S., Tsang, K.F., Rodriguez, J.: Low-cost on-demand C-RAN based mobile small-cells. IEEE Access 4, 2331–2339 (2016)

    Article  Google Scholar 

  26. 3GPP: TR 22.852, 3GPP System Architecture Working Group 1 (SA1) RAN Sharing Enhancements Study Item Overall Description

    Google Scholar 

  27. Checko, A., et al.: Cloud RAN for mobile networks–a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015)

    Article  Google Scholar 

  28. Carvalho, M.A., Vieira, P.: Simulating long term evolution self-optimizing based networks. i-ETC: ISEL Acad. J. Electron. Telecommun. Comput. 2(1), 8 (2013)

    Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement H2020-MSCA-ITN-2016 SECRET-722424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Marzouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marzouk, F., Alheiro, R., Rodriguez, J., Radwan, A. (2019). Perspectives for 5G Network Sharing for Mobile Small Cells. In: Sucasas, V., Mantas, G., Althunibat, S. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-05195-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05195-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05194-5

  • Online ISBN: 978-3-030-05195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics