Skip to main content

High Speed Simulation Analytics

  • Chapter
  • First Online:
Simulation for Industry 4.0

Abstract

Simulation, especially Discrete-event simulation (DES ) and Agent -based simulation (ABS ), is widely used in industry to support decision making. It is used to create predictive models or Digital Twins of systems used to analyse what-if scenarios, perform sensitivity analytics on data and decisions and even to optimise the impact of decisions. Simulation-based Analytics , or just Simulation Analytics , therefore has a major role to play in Industry 4.0. However, a major issue in Simulation Analytics is speed. Extensive, continuous experimentation demanded by Industry 4.0 can take a significant time, especially if many replications are required. This is compounded by detailed models as these can take a long time to simulate. Distributed Simulation (DS) techniques use multiple computers to either speed up the simulation of a single model by splitting it across the computers and/or to speed up experimentation by running experiments across multiple computers in parallel. This chapter discusses how DS and Simulation Analytics , as well as concepts from contemporary e-Science, can be combined to contribute to the speed problem by creating a new approach called High Speed Simulation Analytics . We present a vision of High Speed Simulation Analytics to show how this might be integrated with the future of Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    project-cola.eu.

  2. 2.

    www.cloudsme-apps.com.

  3. 3.

    www.cloudbroker.com.

  4. 4.

    http://www.cloudsme-apps.com/practical-examples/.

Abbreviations

ABS :

Agent -based Simulation

APIs:

Application Programming Interfaces

DES :

Discrete-event Simulation

DS:

Distributed Simulation

HLA :

High Level Architecture

HPC:

High Performance Computing

ICT :

Information and Communication Technologies

IaaS:

Infrastructure as a Service

i4MS:

Innovation for Manufacturing SMEs

IEEE:

Institute of Electrical and Electronics Engineers

IoT :

Internet of Things

M&S:

Modelling & Simulation

MSaaS:

Modelling & Simulation as a Service

OR :

Operational Research

OR /MS:

Operational Research /Management Science

PADS :

Parallel and Distributed Simulation

PDES:

Parallel Discrete Event Simulation

PaaS:

Platform as a Service

RTI:

Run Time Infrastructure

SISO:

Simulation Interoperability Standards Organization

SME:

Small-to-Medium Enterprise

SaaS:

Software as a Service

References

  1. Akos B, Zoltan F, Peter K, Kacsuk P (2013) Building Science Gateways By Utilizing The Generic WS-PGRADE/gUSE workflow system. Comput Sci 14(3):307–325. https://doi.org/10.7494/csci.2013.14.2.307

    Article  Google Scholar 

  2. Anagnostou A, Taylor SJE (2017) A distributed simulation methodological framework for OR/MS applications. Simul Model Pract Theory 70:101–119. https://doi.org/10.1016/j.simpat.2016.10.007

    Article  Google Scholar 

  3. Anderson K, Du J, Narayan A, Gamal AE (2014) GridSpice: a distributed simulation platform for the smart grid. IEEE Trans Ind Inf 10(4):2354–2363. https://doi.org/10.1109/TII.2014.2332115

    Article  Google Scholar 

  4. Ardizzone V, Barbera R, Calanducci A, Fargetta M, Ingrà E, Porro I, … Schenone A (2012) The DECIDE science gateway. J Grid Comput 10(4):689–707. https://doi.org/10.1007/s10723-012-9242-3

    Article  Google Scholar 

  5. Boer CA, de Bruin A, Verbraeck A (2009) A survey on distributed simulation in industry. J Simul 3(1):3–16. https://doi.org/10.1057/jos.2008.9

    Article  Google Scholar 

  6. Chaudhry NR, Nouman A, Anagnostou A, Taylor SJE (2016) WS-PGRADE workflows for cloud-based distributed simulation. In: Proceedings of the operational research society simulation workshop 2016, pp 192–201

    Google Scholar 

  7. Choi C, Seo K-M, Kim TG (2014) DEXSim: an experimental environment for distributed execution of replicated simulators using a concept of single simulation multiple scenarios. Simulation 90(4):355–376. https://doi.org/10.1177/0037549713520251

    Article  Google Scholar 

  8. Davenport TH, Harris JG (2007) Competing on analytics: the new science of winning. Harvard Business School, Boston, MA

    Google Scholar 

  9. Deelman E, Gannon D, Shields M, Taylor I (2009) Workflows and e-science: an overview of workflow system features and capabilities. Future Gener Comput Syst 25(5):528–540. https://doi.org/10.1016/j.future.2008.06.012

    Article  Google Scholar 

  10. Deelman E, Vahi K, Rynge M, Juve G, Mayani R, Da Silva RF (2016) Pegasus in the cloud: science automation through workflow technologies. IEEE Internet Comput 20(1):70–76. https://doi.org/10.1109/MIC.2016.15

    Article  Google Scholar 

  11. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organizations. Int J High Perform Comput Appl 15(3):200–222. https://doi.org/10.1177/109434200101500302

    Article  Google Scholar 

  12. Fujimoto RM (1990) Parallel discrete event simulation. Commun ACM 33(10):30–53. https://doi.org/10.1145/84537.84545

    Article  Google Scholar 

  13. Fujimoto RM (2000) Parallel and distributed simulation systems. Wiley, New York

    Google Scholar 

  14. Fujimoto RM (2016) Research challenges in parallel and distributed simulation. ACM Trans Model Comput Simul 26(4):1–29. https://doi.org/10.1145/2866577

    Article  MathSciNet  Google Scholar 

  15. Heidelberger P (1986) Statistical analysis of parallel simulation. In: Proceedings of the 1986 winter simulation conference (WSC), pp 2278–2288

    Google Scholar 

  16. IEEE (2010) IEEE 1516-2010 IEEE standard for modeling and simulation (M&S) high level architecture (HLA)—framework and rules. IEEE Computer Society Press. https://doi.org/10.1109/IEEESTD.2010.5953411

  17. Kacsuk P (ed) (2014) Science gateways for distributed computing infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11268-8

    Google Scholar 

  18. Kacsuk P, Farkas Z, Kozlovszky M, Hermann G, Balasko A, Karoczkai K, Marton I (2012) WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user communities. J Grid Comput 10(4):601–630. https://doi.org/10.1007/s10723-012-9240-5

    Article  Google Scholar 

  19. Kiss T, Kacsuk P, Takacs E, Szabo A, Tihanyi P, Taylor SJE (2014) Commercial use of WS-PGRADE/gUSE. In: Kacsuk P (ed) Science gateways for distributed computing infrastructures: development framework and exploitation by scientific user communities. Spinger, Cham, pp 271–286. https://doi.org/10.1007/978-3-319-11268-8-19

  20. Kite S, Wood C, Taylor SJE, Mustafee N (2011) SAKERGRID: simulation experimentation using grid enabled simulation software. In: Proceedings of the 2011 winter simulation conference (WSC), pp 2278–2288. https://doi.org/10.1109/WSC.2011.6147939

  21. Lendermann P, Heinicke MU, McGinnis LF, McLean C, Strassburger S, Taylor SJE (2007) Panel: distributed simulation in industry—a real-world necessity or ivory tower fancy? In: Proceedings of the 2007 winter simulation conference (WSC), pp 1053–1062. https://doi.org/10.1109/WSC.2007.4419704

  22. Liew CS, Atkinson MP, Galea M, Ang TF, Martin P, Van Hemert JI (2016) Scientific workflows: moving across paradigms. ACM Comput Surv 49(4):1–39. https://doi.org/10.1145/3012429

    Article  Google Scholar 

  23. Liu X, Taylor SJE, Mustafee N, Wang J, Gao Q, Gilbert D (2014) Speeding up systems biology simulations of biochemical pathways using Condor. Concurrency Comput Pract Experience 26(17):2727–2742. https://doi.org/10.1002/cpe.3161

    Article  Google Scholar 

  24. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, … Zhao Y (2006) Scientific workflow management and the Kepler system. Concurrency Comput Pract Experience 18(10):1039–1065. https://doi.org/10.1002/cpe.994

    Article  Google Scholar 

  25. Lustig I, Dietrich B, Johnson C, Dziekan C (2010) The analytics journey. Analytics magazine. Retrieved 11–13 November/December from http://analytics-magazine.org/the-analytics-journey/

  26. Macal CM (2016) Everything you need to know about agent-based modelling and simulation. J Simul 10(2):144–156. https://doi.org/10.1057/jos.2016.7

    Article  Google Scholar 

  27. Mell P, Grance T (2011) The NIST definition of cloud computing. National Institute of Standards and Technology, Gaithersburg, MD. Retrieved from http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

  28. Mustafee N, Taylor SJE (2009) Speeding up simulation applications using WinGrid. Concurrency Comput Pract Experience 21(11):1504–1523. https://doi.org/10.1002/cpe.1401

    Article  Google Scholar 

  29. Mustafee N, Taylor S, Katsaliaki K, Dwivedi Y, Williams M (2012) Motivations and barriers in using distributed supply chain simulation. Int Trans Oper Res 19(5):733–751. https://doi.org/10.1111/j.1475-3995.2011.00838.x

    Article  Google Scholar 

  30. North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex adaptive systems modeling with REPAST Simphony. Complex Adapt Syst Model 1(1):3. https://doi.org/10.1186/2194-3206-1-3

    Article  Google Scholar 

  31. Rak M, Cuomo A, Villano U (2012) mJADES: concurrent simulation in the cloud. In: Proceedings of the 2012 international conference on complex, intelligent, and software intensive systems (CISIS), pp 853–860. https://doi.org/10.1109/CISIS.2012.134

  32. Taylor SJE (2018) Distributed simulation: state-of-the-art and potential for operational research. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2018.04.032

    Article  MathSciNet  Google Scholar 

  33. Taylor SJE, Anagnostou A, Kiss T, Kite S, Pattison G, Kovacs J, Kacsuk P (2018a) An architecture for an autoscaling cloud-based system for simulation experimentation. In: 2018 Winter simulation conference. IEEE Press

    Google Scholar 

  34. Taylor SJE, Anagnostou A, Kiss T, Terstyanszky G, Kacsuk P, Fantini N, … Costes J (2018b) Enabling cloud-based computational fluid dynamics with a platform as a service solution. IEEE Trans Ind Inf. 15:85–94. https://doi.org/10.1109/TII.2018.2849558

    Article  Google Scholar 

  35. Taylor SJE, Kiss T, Anagnostou A, Terstyanszky G, Kacsuk P, Costes J, Fantini N (2018) The CloudSME simulation platform and its applications: a generic multi-cloud platform for developing and executing commercial cloud-based simulations. Future Gener Comput Syst 88:524–539. https://doi.org/10.1016/j.future.2018.06.006

    Article  Google Scholar 

  36. Taylor SJE, Strassburger S, Turner SJ, Mustafee N (2010) SISO-STD-006-2010 standard for COTS simulation package interoperability reference models. Orlando

    Google Scholar 

  37. Taylor SJE, Turner SJ, Strassburger S, Mustafee N (2012) Bridging the gap: a standards-based approach to OR/MS distributed simulation. ACM Trans Model Comput Simul 22(4):1–23. https://doi.org/10.1145/2379810.2379811

    Article  MathSciNet  Google Scholar 

  38. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, … Goble C (2013) The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucl Acids Res 41:W557–61. https://doi.org/10.1093/nar/gkt328

    Article  Google Scholar 

  39. Yao Y, Meng D, Zhu F, Yan L, Qu Q, Lin Z, Ma H (2017) Three-level-parallelization support framework for large-scale analytic simulation. J Simul 11(3):194–207. https://doi.org/10.1057/s41273-017-0057-x

    Article  Google Scholar 

  40. Zhao Y, Hategan M, Clifford B, Foster I, Von Laszewski G, Nefedova V, … Wilde M (2007) Swift: fast, reliable, loosely coupled parallel computation. In: Proceedings of the 2007 IEEE congress on services, pp 199–206. https://doi.org/10.1109/SERVICES.2007.63

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. E. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, S.J.E., Anagnostou, A., Kiss, T. (2019). High Speed Simulation Analytics. In: Gunal, M. (eds) Simulation for Industry 4.0. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-04137-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04137-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04136-6

  • Online ISBN: 978-3-030-04137-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics