Skip to main content

Shape Analysis on Homogeneous Spaces: A Generalised SRVT Framework

  • Conference paper
  • First Online:

Part of the book series: Abel Symposia ((ABEL,volume 13))

Abstract

Shape analysis is ubiquitous in problems of pattern and object recognition and has developed considerably in the last decade. The use of shapes is natural in applications where one wants to compare curves independently of their parametrisation. One computationally efficient approach to shape analysis is based on the Square Root Velocity Transform (SRVT). In this paper we propose a generalised SRVT framework for shapes on homogeneous manifolds. The method opens up for a variety of possibilities based on different choices of Lie group action and giving rise to different Riemannian metrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this paper we assume all Lie groups and Lie algebras to be finite dimensional. Note however, that many of our techniques carry over to Lie groups modelled on Hilbert spaces, [9].

  2. 2.

    Every homogeneous space GH is a principal H-bundle, whence there are smooth horizontal lifts of smooth curves (depending on some choice of connection, cf. e.g. [23, Chapter 5.1]).

  3. 3.

    In the setting of manifolds on Fréchet spaces (with which we deal here) our setting of calculus is equivalent to the so called convenient calculus (see [15]). Convenient calculus defines a map f to be smooth if it “maps smooth curves to smooth curves”, i.e. f ∘ c is smooth for any smooth curve c. This yields a calculus on infinite-dimensional spaces where smoothness does not necessarily imply continuity (though this does not happen on Fréchet spaces), we refer to [15] for a detailed exposition. Note that both calculi can handle smooth maps on intervals [a, b], see e.g. [13, 1.1] and [15, Chapter 24].

  4. 4.

    As \(\mathrm {Imm} (I,\mathcal {M}) \subseteq C^\infty (I,\mathcal {M})\) is open and the evaluation map \(\text{ev}_{0} \colon \mathrm {Imm} (I,\mathcal {M}) \rightarrow \mathcal {M}\) is a submersion, \(\mathcal {P}_{c_0} = \text{ev}_0^{-1} (c_0)\) is a closed submanifold of \(\mathrm {Imm} (I,\mathcal {M})\) (cf. [12]).

  5. 5.

    A submanifold N of a (possibly infinite-dimensional) manifold M is called split if it is modeled on a closed subvectorspace F of the model space E of M, such that F is complemented, i.e. E = F ⊕ G as topological vector spaces (see [12, Section 1]).

  6. 6.

    See [12] for more information on immersions between infinite-dimensional manifolds.

  7. 7.

    Note that there might be different reductive structures on a homogeneous manifold. We refer to [20, Section 5.1] for examples and further references.

  8. 8.

    An alternative representation of G p,n is given by considering symmetric matrices P, n × n, with rank(P) = p and P 2 = P, [14].

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  2. Amiri, H., Schmeding, A.: A Differentiable Monoid of Smooth Maps on Lie Groupoids (2017). arXiv:1706.04816v1

    Google Scholar 

  3. Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. Anal. Math. 13, 1–114 (1964)

    Article  MathSciNet  Google Scholar 

  4. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Global Anal. Geom. 41(4), 461–472 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50(1), 1–38 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bauer, M., Eslitzbichler, M., Grasmair, M.: Landmark-guided elastic shape analysis of human character motions. Inverse Prob. Imaging 11(4), 601–621 (2015). https://doi.org/10.3934/ipi.2017028

    Article  MathSciNet  Google Scholar 

  8. Bruveris, M.: Optimal reparametrizations in the square root velocity framework. SIAM J. Math. Anal. 48(6), 4335–4354 (2016)

    Article  MathSciNet  Google Scholar 

  9. Celledoni, E., Eslitzbichler, M., Schmeding, A.: Shape analysis on Lie groups with applications in computer animation. J. Geom. Mech. 8(3), 273–304 (2016)

    Article  MathSciNet  Google Scholar 

  10. Celledoni, E., Owren, B.: On the implementation of Lie group methods on the Stiefel manifold. Numer. Algorithm. 32(2–4), 163–183 (2003)

    Article  MathSciNet  Google Scholar 

  11. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Universitext, 3rd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  12. Glöckner, H.: Fundamentals of Submersions and Immersions Between Infinite-Dimensional Manifolds (2015). arXiv:1502.05795v3 [math]

    Google Scholar 

  13. Glöckner, H.: Regularity Properties of Infinite-Dimensional Lie Groups, and Semiregularity (2015). arXiv:1208.0715v3

    Google Scholar 

  14. Huper, K., Leite, F.: On the geometry of rolling and interpolation curves on S n, SOn, and Grassmann manifolds. J. Dyn. Control. Syst. 13, 467–502 (2007)

    Google Scholar 

  15. Kriegl, A., Michor, P.W.: The convenient setting of global analysis. In: Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence

    Google Scholar 

  16. Kobayashi, S., Nomizu, K. Foundations of Differential Geometry, vol. II. Interscience Tracts in Pure and Applied Mathematics, no. 15, vol. II. Interscience Publishers John Wiley, New York/London/Sydney (1969)

    Google Scholar 

  17. Knapp, A.W.: Lie groups beyond an introduction. In: Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

    Google Scholar 

  18. Le Brigant, A.: Computing distances and geodesics between manifold-valued curves in the SRV framework. J. Geom. Mech. 9(2) (2017). https://doi.org/10.3934/jgm.2017005

    Article  MathSciNet  Google Scholar 

  19. Michor, P.W.: Manifolds of Differentiable Mappings. In: Shiva Mathematics Series, vol. 3. Shiva Publishing Ltd., Nantwich (1980)

    Google Scholar 

  20. Munthe-Kaas, H., Verdier, O.: Integrators on homogeneous spaces: isotropy choice and connections. Found. Comput. Math. 16(4), 899–939 (2016)

    Article  MathSciNet  Google Scholar 

  21. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1–48 (2006)

    Google Scholar 

  23. Ortega, J.-P., Ratiu, T.S.: Momentum maps and Hamiltonian reduction. In: Progress in Mathematics, vol. 222. Birkhäuser Boston, Inc., Boston (2004)

    Google Scholar 

  24. Sharpe, R.W.: Differential geometry. In: Graduate Texts in Mathematics, vol. 166. Springer, New York (1997). Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern

    Google Scholar 

  25. Su, Z., Klassen, E., Bauer, M.: Comparing Curves in Homogeneous Spaces (2017). 1712.04586v1

  26. Su, Z., Klassen, E., Bauer, M.: The square root velocity framework for curves in a homogeneous space. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 680–689. IEEE (2017)

    Google Scholar 

  27. Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011)

    Article  Google Scholar 

  28. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116–125 (2003)

    Article  Google Scholar 

  29. Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on Riemmannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8(2), 530–552 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Research Council, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, grant agreement No. 691070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Celledoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celledoni, E., Eidnes, S., Schmeding, A. (2018). Shape Analysis on Homogeneous Spaces: A Generalised SRVT Framework. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_7

Download citation

Publish with us

Policies and ethics