Skip to main content

Geoengineering

  • Chapter
  • First Online:
Book cover Climate Technology, Gender, and Justice

Part of the book series: SpringerBriefs in Sociology ((BRIEFSSOCY))

Abstract

This Chapter provides an overview of geoengineering research, including the status of current research and testing, the significance of modeling and simulation, the role of public participation, and the subject of governance. A discussion of geoengineering’s basic epistemology, values and background assumptions is also included with specific attention paid to the solar radiation management technique of atmospheric sulfate geoengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate, R. S. (2013). Ocean iron fertization: Science, law and uncertainty. In W. C. G. Burns & A. L. Strauss (Eds.), Climate change geoengineering: Philosophical perspectives, legal issues, and governance frameworks. Cambridge: Cambridge University Press.

    Google Scholar 

  • ABN, Biofuelwatch, Gaia Foundation. (2009). Biochar land grabbing: The impacts on Africa. ABN, Biofuelwatch, Gaia Foundation. http://www.biofuelwatch.org.uk/docs/biochar_africa_briefing.pdf. Accessed 29 Oct 2016.

  • Academy of Finland. (2014). Researchers look into geoengineering possibilities. Academy of Finland http://web.archive.org/web/20150314161010/http://www.aka.fi/en-GB/A/Programmes-and-cooperation/Academy-programmes/Etusivun-elementit/Researchers-look-into-geoengineering-possibilities/. Accessed 13 Oct 2016.

  • Alcamo, J. (Ed.). (2012). IMAGE 2.0: Integrated modeling of global climate change. New York: Springer Science & Business Media Press.

    Google Scholar 

  • Allen, K. R., & Barber, K. M. (1992). Ethical and epistemological tensions in applying a postmodern perspective to feminist research. Psychology of Women Quarterly, 16, 1–15.

    Article  Google Scholar 

  • Amelung, D., & Funke, J. (2014). Laypeople’s risky decisions in the climate change context: Climate engineering as a risk-defusing strategy? Human and Ecological Risk Assessment, 21, 533–559.

    Article  Google Scholar 

  • American Meteorological Society. (2009). Geoengineering the climate system: A policy statement of the American Meteorological Society. Bulletin of the American Meteorological Society, 90, 1369–1370.

    Google Scholar 

  • Ammann, C. M., Washington, W. M., Meehl, G. A., Buja, L., & Teng, H. Y. (2010). Climate engineering through artificial enhancement of natural forcings: Magnitudes and implied consequences. Journal of Geophysical Research-Atmospheres, 115, D22109.

    Article  Google Scholar 

  • Anderegg, W. R. L. (2010, June 21) Expert credibility in climate change. Proceedings of the National Academy of Sciences, 107(27), 12107–12109.

    Article  Google Scholar 

  • Anshelm, J., & Hansson, A. (2014a). The last chance to save the planet? An analysis of the geoengineering advocacy discourse in the public sphere. Environmental Humanities, 3, 101–123.

    Article  Google Scholar 

  • Anshelm, J., & Hansson, A. (2014b). Battling Promethean dreams and Trojan horses: Revealing the critical discourses of geoengineering. Energy Research & Social Science, 2, 135–144.

    Article  Google Scholar 

  • Asilomar International Conference on Climate Intervention Technologies. (2010, March). Asilomar Conference Center, California. https://www.scribd.com/document/25251727/The-Asilomar-International-Conference-On-Climate-Intervention-Geoengineering-Technologies-2010

  • Balint, P., et al. (2011). Wicked environmental problems: Managing uncertainty and conflict. Washington, DC: Island Press.

    Book  Google Scholar 

  • Banerjee, B. (2011). The limitations of geoengineering governance in a world of uncertainty. Stanford Journal of Law, Science & Policy, 4, 15–36.

    Google Scholar 

  • Bates, S. S., Lamb, B. K., Guenther, A., Dignon, J., & Stoiber, R. E. (1992). Sulfur emissions to the atmosphere from natural sources. Journal of Atmospheric Chemistry., 14, 315–337. https://doi.org/10.1007/BF00115242.

    Article  Google Scholar 

  • Bellamy, R., Chilvers, J., Vaughan, N. E., & Lenton, T. M. (2012). A review of climate geoengineering appraisals. Wiley Interdisciplinary Reviews-Climate Change, 3(6), 597–615. https://doi.org/10.1002/wcc.197.

    Article  Google Scholar 

  • Best, S. (1991). Chaos and entropy: Metaphors in postmodern science and social theory. Science as Culture, 2(11), 188–226.

    Article  Google Scholar 

  • Blackstock, J. (2012). Researchers can’t regulate climate engineering alone. Nature, 486(7402), 159–159. https://doi.org/10.1038/486159a.

    Article  Google Scholar 

  • Blain, S., Sarthou, G., & Laan, P. (2008). Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean). Deep-Sea Research Part Ii-Topical Studies in Oceanography, 55(5-7), 594–605.

    Article  Google Scholar 

  • Bluth, G. J. S., Rose, W. I., Sprod, I. E., & Krueger, A. J. (1997). Stratospheric loading of sulfur from explosive volcanic eruptions. Journal of Geology, 105, 671–683.

    Article  Google Scholar 

  • Bonney, R. (1996). Citizen science: A lab tradition. Living Bird, 15(4), 7–15.

    Google Scholar 

  • Bony, S., & Dufresne, J. F. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32, 20. https://doi.org/10.1029/2005GL023851. Accessed 15 Oct 2016.

    Article  Google Scholar 

  • Bowker, G. C. (1992). What’s in a patent? In W. E. Bijker & J. Law (Eds.), Shaping technology/building society: Studies in sociotechnical change (pp. 53–74). London: MIT Press.

    Google Scholar 

  • Brahic, C. (2009, February 25). Hacking the planet: The only climate solution left? Reed Business Information Ltd. Accessed 28 Sept 2016.

    Google Scholar 

  • Branson, R. (2016). Virgin Earth challenge. http://www.virginearth.com. Accessed 8 Oct 2016.

  • Brohan, P., et al. (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal of Geophysical Research, 111, D12106. https://doi.org/10.1029/2005JD006548. Accessed 5 Oct 2016.

    Article  Google Scholar 

  • Brovkin, V., Petoukhov, V., Claussen, M., Bauer, E., Archer, D., & Jaeger, C. (2009). Geoengineering climate by stratospheric sulphur injections: Earth system vulnerability to technological failure. Climate Change, 92, 243–259.

    Article  Google Scholar 

  • Burns, W. C. G., & Flegel, J. A. (2015). Climate geoengineering and the role of public deliberation: A comment on the US National Academy of Sciences’ recommendations on public participation. Climate Law, 5, 252–294.

    Article  Google Scholar 

  • Burns, W. C. G., & Strauss, A. L. (2013). Climate change geoengineering: Philosophical perspectives, legal issues and governance frameworks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cairns, R. C. (2014). Climate geoengineering: Issues of path-dependence and socio-technical lock-in. Wiley Interdisciplinary Reviews-Climate Change, 5(5), 649–661. https://doi.org/10.1002/wcc.296.

    Article  Google Scholar 

  • Cao, L., Bala, G., & Caldeira, K. (2012). Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environmental Research Letters, 7, 034015.

    Article  Google Scholar 

  • Cao, L., Gao, C. C., & Zhao, L. Y. (2015). Geoengineering: Basic science and ongoing research efforts in China. Advances in Climate Change Research, 6(3-4), 188–196.

    Article  Google Scholar 

  • Connick, S., & Judith Innes, J. (2003). Outcomes of collaborative water policy making: Applying complexity thinking to evaluation. Journal of Environmental Planning and Management, 46, 177–197.

    Article  Google Scholar 

  • Cook, J., et al. (2016, April 13). Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, 11(4). https://doi.org/10.1088/1748-9326/11/4/048002.

    Article  Google Scholar 

  • Crutzen, P. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climate Change, 77, 211–219.

    Article  Google Scholar 

  • Dean, J. (2009). Iron fertilization: A scientific review with international policy recommendations. Environs: Environmental Law and Policy, 32, 321–329.

    Google Scholar 

  • Delanty, G. (1997). Social science: Beyond constructivism and realism. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Doran, P. T., & Zimmerman, M. K. (2009). Examining the scientific consensus on climate change. Eos Transactions American Geophysical Union, 90, 3. https://doi.org/10.1029/2009EO030002.

    Article  Google Scholar 

  • Dunlap, R. E., & Jacques, P. J. (2013). Climate change denial books and conservative think tanks: Exploring the connection. American Behavioral Scientist. https://doi.org/10.1177/0002764213477096. Accessed 21 Oct 2016.

    Article  Google Scholar 

  • ETC Group. (2015). Climate & geoengineering. ETC Group. http://www.etcgroup.org/issues/climate-geoengineering. Accessed 12 Oct 2016.

  • Farquhar, G. D., & Roderick, M. L. (2003). Pinatubo, diffuse light, and the carbon cycle. Science, 299, 1997–1998. https://doi.org/10.1126/science.1080681.

    Article  Google Scholar 

  • Feenberg, A. (1999). Questioning technology. London/New York: Routledge.

    Google Scholar 

  • Ferraro, A. J., Highwood, E. J., & Charlton-Perez, A. J. (2011). Stratospheric heating by potential geoengineering aerosols. Geophysical Research Letters, 38, L24706. https://doi.org/10.1029/2011GL049761.

    Article  Google Scholar 

  • Fleming, J. R. (2006). The pathological history of weather and climate modification: Three cycles of promise and hype. Historical Studies of Physical and Biological Sciences, 37(1), 3–25.

    Article  Google Scholar 

  • Fleming, J. R. (2007). The climate engineers. The Wilson Quarterly, 31(2), 46–60.

    Google Scholar 

  • Fortmann, L., Ballard, H., & Sperling, L. (2008). Change around the edges: Gender analysis, feminist methods, and sciences of terrestrial environments. In L. Schiebinger (Ed.), Gendered innovations in science and engineering (pp. 79–96). Stanford: Stanford University Press.

    Google Scholar 

  • Gardiner, S. M. (2010). Is arming the future with geoengineering really the lesser Evil? Some doubts about the ethics of intentionally manipulating the climate system. In S. M. Gardiner, S. Caney, D. Jamieson, & H. Shue (Eds.), Climate ethics: Essential readings (pp. 284–312). New York: Oxford University Press.

    Google Scholar 

  • Geoenginering 2012. (2012). Geo-engineering in the context of sustainable Part 2: Geo-engineering. Geoengineering 2012. Available at: https://www.ecologyandsociety.org/vol17/iss1/art24/#experiments. Accessed 5 May 2018.

  • Gibbons, M. (1999). Science’s new social contract with society. Nature, 402, C81–C84.

    Article  Google Scholar 

  • Giorgetta, M. A., et al. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597.

    Article  Google Scholar 

  • Goldenberg, S., Lukaks, M., & Vaughan, A. (2013, September 19). Russia urges UN climate report to include geoengineering. The Guardian. https://www.theguardian.com/environment/2013/sep/19/russia-un-climate-report-geoengineering. Accessed 6 Oct 2016.

  • Government Accountability Office (GAO). (2010). Climate engineering: Technical status, future directions and potential responses. GAO. http://www.gao.gov/highlights/d1171high.pdf. Accessed 4 Oct 2016.

  • Hamilton, C. (2011). Ethical anxieties about geoengineering: Moral hazard, slippery slope and playing God. Conference of the Australian Academy of Science. http://www.climate-engineering.eu/single/hamilton-clive-conference-paper-ethical-anxieties-about-geoengineering.html. Accessed 29 Sept 2016.

  • Hamilton, C. (2013). How Bill Gates is engineering the Earth to resist climate change. Crikey, 26 Feb 2013. https://www.crikey.com.au/2013/02/26/how-bill-gates-is-engineering-the-earth-to-resist-climate-change/. Accessed 23 Feb 2017.

  • Hansen, J., Lacis, A., Ruedy, R., & Sato, M. (1992). Potential climate impact of Mount Pinatubo eruption. Geophysical Research Letters, 19, 215–218.

    Article  Google Scholar 

  • Hansson, S. O. (2008). From the casino to the jungle. Synthese, 168, 423–432.

    Article  Google Scholar 

  • Haraway, D. J. (1991). Simians, cyborgs, and women: The reinvention of nature. New York: Routledge.

    Google Scholar 

  • Haraway, D. (2008). Otherworldly conversations, terran topics, local terms. Material Feminisms, 3, 157.

    Google Scholar 

  • Harding, S. (1986a). The science question in feminism. Ithaca: Cornell University Press.

    Google Scholar 

  • Harding, S. (1986b). The instability of the analytical categories of feminist theory. Signs: Journal of Women in Culture and Society, 11(4), 645–664.

    Article  Google Scholar 

  • Harding, S. (1991). Whose science? Whose knowledge? Thinking from women’s lives. Ithaca: Cornell University Press.

    Google Scholar 

  • Harding, S. (2004a). A socially relevant philosophy of science? Resources from standpoint theory’s controversiality. Hypatia, 19, 25–47.

    Article  Google Scholar 

  • Harding, S. G. (2004b). The feminist standpoint theory reader: Intellectual and political controversies. Hove: Psychology Press.

    Google Scholar 

  • Harding, S. (2008). Sciences from below: Feminisms, postcolonalities, and modernities. Durham: Duke University Press.

    Book  Google Scholar 

  • Harper, K. C. (2008). Climate control: United States weather modification in the cold war and beyond. Endeavour, 32(1), 20–26.

    Article  Google Scholar 

  • Hawkesworth, M. E. (1989). Knowers, knowing, known: Feminist theory and claims of truth. Signs, 14, 533–557.

    Article  Google Scholar 

  • Haywood, J. M., Jones, A., Bellouin, N., & Stephenson, D. (2013). Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change, 3, 660. https://doi.org/10.1038/nclimate1857.

    Article  Google Scholar 

  • Healey, P. (2014). The stabilisation of geoengineering: Stabilising the inherently unstable. Climate Geoengineering Governancy Working Paper Series.

    Google Scholar 

  • Heibel, M. (2013). Terra furura 2013: Interview with Vandana Shiva about geoengineering. NoGeoingegneria. http://www.nogeoingegneria.com/interviste/terra-futura-2013-interview-with-vandana-shiva-about-geoengineering/. Accessed 3 Oct 2016.

  • Hergerl, B., & Solomon, S. (2009). Risks of climate engineering. Science Express. https://doi.org/10.1126/science.1178530. Accessed 1 Nov 2016.

    Article  Google Scholar 

  • House of Commons. (2009–2010). The regulation of geoengineering: Fifth report of session. http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/221/221.pdf. Accessed 30 Sept 2016.

  • Hubert, A. M., & David, R. (2015). Research involving geoengineering: Introduction, draft articles and commentaries. Institute for Advanced Sustainability Studies. http://www.insis.ox.ac.uk/fileadmin/images/misc/An_Exploration_of_a_Code_of_Conduct.pdf. Accessed 30 Sept 2015.

  • Incorpera, F. P. (2016). Climate change: A wicked problem. Complexity and uncertainty at the intersection of science, economics, politics and human behavior. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • InterAcademy Council. (2010). Climate change assessments: Review of the processes and procedures of the IPCC. http://reviewipcc.interacademycouncil.net. Accessed 4 Oct 2016.

  • IPCC. (2013). Climate change 2013: The physical science basis. http://www.ipcc.ch/report/ar5/wg1/. Accessed 14 Oct 2016.

  • Ipsos-MORI. (2010). Experiment Earth: Report on a public dialogue on geoengineering. Natural Environment Research Council, Swindon UK. See http://www.nerc.ac.uk/about/consult/geoengineering-dialogue-final-report.pdf. Accessed 1 Oct 2016.

  • Izrael, Y. A., et al. (2010). Field studies of a geo-engineering method of maintaining a modern climate with aerosol particles. Russian Meteorology and Hydrology, 34(10), 635–638.

    Article  Google Scholar 

  • Jones, A., Haywood, J., & Boucher, O. (2009). Climate impacts of geoengineering marine stratocumulus clouds. Atmospheres: Journal of Geophysical Research, 114, 9. https://doi.org/10.1029/2008JD011450.

    Article  Google Scholar 

  • Kalidindi, S., et al. (2015). Modeling of solar radiation management: A comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Climate Dynamics, 44(9–10), 2909–2925.

    Article  Google Scholar 

  • Keith, D. W. (2000). Geoengineering the climate: History and prospect. Annual Review of Energy and the Environment, 25(1), 245–284.

    Article  Google Scholar 

  • Keith, D. (2015). A cheap but dangerous global warming fix. PBS Newshour. http://www.pbs.org/newshour/making-sense/cheap-controversial-solution-climate-change/. 15 Oct 2015.

  • Kintisch, E. (2012). Overview of climate engineering. The Bridge on Frontiers of Engineering, 42(4), 5–9.

    Google Scholar 

  • Knutti, R. (2008). Should we believe model predictions for future climate change? Philosophical Transactions of the Royal Society A, 366, 4647–4664.

    Article  Google Scholar 

  • Kravitz, B., et al. (2011). The geoengineering model intercomparison project (GeoMIP). Atmospheric Science Letters, 12, 162–167.

    Article  Google Scholar 

  • Kravitz, et al. (2015). The geoengineering model intercomparison project phase 6 (GeoMIP6): Simulation design and preliminary results. Journal of Geoscientific Model Development, 3, 3379–3392.

    Article  Google Scholar 

  • Lambert, F. H., et al. (2008). How much will precipitation increase with global warming? Eos, 89, 193–194.

    Article  Google Scholar 

  • Long, J. C. S., & Scott, D. (2013, Spring). Vested interests and geoengineering research. Issues. http://issues.org/29-3/long-4/. Accessed 22 Sept 2016.

  • Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.

    Google Scholar 

  • Longino, H. E. (2005). Can there be a feminist science? In A. E. Cudd & R. O. Andreasen (Eds.), Feminist theory: A philosophical anthology (pp. 210–217). Oxford/Malden: Blackwell Publishing.

    Google Scholar 

  • Lou, X., et al. (2012). Cloud-resolving model for weather modification in China. Chinese Science Bulletin, 57, 1055–1061.

    Article  Google Scholar 

  • Lucaks, M. (2012, October 15). World’s biggest geoengineering experiment ‘violates’ UN rules. The Guardian. https://www.theguardian.com/environment/2012/oct/15/pacific-iron-fertilisation-geoengineering. Accessed 5 Oct 2016.

  • Lunt, D. J. (2013). Sunshades for solar radiation management. In T. Lenton & N. Vaughan (Eds.), Geoengineering responses to climate change (pp. 9–20). New York: Springer.

    Chapter  Google Scholar 

  • Luokkanen, M., Huttunen, S., & Hilden, M. (2013). Geoengineering, news media and metaphors: Framing the controversial. Public Understanding of Science, 1–16. http://pus.sagepub.com/content/early/2013/02/14/0963662513475966. Accessed 4 Oct 2016.

  • Marshall, G. (2014). Don’t even think about it: Why our Brains are wired to ignore climate change. New York: Bloomsbury Publishing.

    Google Scholar 

  • Mathews, H. D., & Caldeira, K. (2007). Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences, 104, 9949–9954. https://doi.org/10.1073/pnas.0700419104.

    Article  Google Scholar 

  • Matthews, H. D., & Caldeira, K. (2007). Transient climate–carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences, 104(24), 9949–9954.

    Article  Google Scholar 

  • McClellan, J., Sisco, J., Suarez, B., & Keogh, G. (2010). Geoengineering cost analysis: Final report. Cambridge MA: Aurora Flight Sciences Corporation.

    Google Scholar 

  • Meehl, G. A., et al. (2007). The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383–1394.

    Article  Google Scholar 

  • Meleshko, V. P., Kattsov, V. M., & Karol, I. L. (2010). Is aerosol scattering in the stratosphere a safety technology preventing global warming? Russian Meteorology and Hydrology, 35(7), 433–440.

    Article  Google Scholar 

  • Mercer, A. M., Keith, D. W., & Sharp, J. D. (2011). Public understanding of solar radiation management. Environmental Research Letters, 6, 044006.

    Article  Google Scholar 

  • Minnis, P., et al. (1993). Radiative climate forcing by the Mount Pinatubo eruption. Science, 259, 1411–1415.

    Article  Google Scholar 

  • Moore, J., Jevrejeva, S., & Grinsted, A. (2010). Efficacy of geoengineering to limit 21st century sea-level rise. Proceedings of the National Academy of Sciences U S A, 107, 15699–15703.

    Article  Google Scholar 

  • Murphy, D. M. (2009). Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environment Science Technology, 43(8), 2784–2786. https://doi.org/10.1021/es802206b.

    Article  Google Scholar 

  • NAS. (2015a). Climate intervention: Reflecting sunlight to cool the Earth. NAS. https://nas-sites.org/americasclimatechoices/other-reports-on-climate-change/climate-intervention-reports/. Accessed 30 Sept 2016

  • NAS. (2015b). Climate intervention: Carbon dioxide removal and reliable sequestration. NAS. https://nas-sites.org/americasclimatechoices/other-reports-on-climate-change/climate-intervention-reports/. Accessed 30 Sept 2016

  • National University of Singapore Blog. (2015). Two harvard engineers and a balloon. National University Singapore. Accessible at: http://blog.nus.edu.sg/pollutionsolution/. Accessed 2 May 2018.

  • Niemeier, U., Schmidt, H., Alterskjær, K., & Kristjánsson, J. E. (2013). Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. Journal of Geophysical Research: Atmospheres, 118(21), 11905–11917.

    Google Scholar 

  • Nowack, P. J., et al. (2016). Stratospheric ozone changes under solar geoengineering: Implications for UV exposure and air quality. Atmospheric Chemistry and Physics, 16, 4191–4203.

    Article  Google Scholar 

  • Oldham, P., et al. (2014). Mapping the landscape of climate engineering. Philosophical Transactions of the Royal Society A, 372, 1–20. https://doi.org/10.1098/rsta.2014.0065.

    Article  Google Scholar 

  • Oreskes, et al. (1994). Verification, validation and confirmation of numerical models in the earth sciences. Science, 263, 641–646.

    Article  Google Scholar 

  • Oxford Geoengineering Programme. (2009). The Oxford principles. http://www.geoengineering.ox.ac.uk/oxford-principles/principles/. Accessed 15 Sept 2016.

  • Oxford Geoengineering Programme. (2016). What is geoengineering? http://www.geoengineering.ox.ac.uk/what-is-geoengineering/what-is-geoengineering/. Accessed 1 Sept 2016.

  • Parkhill, K., & Pidgeon, N. (2011). Public engagement on geoengineering research: Preliminary report on the SPICE deliberative workshops. Understanding Risk Working Paper 11-01. School of Psychology, Cardiff University UK.

    Google Scholar 

  • Pidgeon, et al. (2012). Exploring early public responses to geoengineering. Philosophical Transaction of the Royal Society, 370, 1974. https://doi.org/10.1098/rsta.2012.0099. Accessed 1 Oct 2016.

    Article  Google Scholar 

  • Pidgeon, N., et al. (2013). Deliberating stratospheric aerosols for climate geoengineering and the SPICE project. Nature Climate Change, 3, 451–457.

    Article  Google Scholar 

  • Räisänen, J. (2001). CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. Journal of Climate, 14, 2088–2104.

    Article  Google Scholar 

  • Randall, D. A., et al. (2007). Climate models and their evaluation. In S. D. Solomon et al. (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR) (pp. 589–662). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rasch, P. J, Tilmes, S, Turco, R. P, Robock, A Oman, L, Chen, C, Stenchikov, G. L, & Garcia, R. R. (2008, November). An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions. Series A Mathematical, Physical, and Engineering Sciences, 366(1882), 4007–4037.

    Article  Google Scholar 

  • Rayner, S., et al. (2013). The Oxford principles. Climatic Change, 121(3), 499–512.

    Article  Google Scholar 

  • Ricke, K., Morgan, G., & Allen, M. (2010). Regional climate response to solar-radiation management. Nature Geoscience, 3, 8.

    Article  Google Scholar 

  • Rittel, H. W. J. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.

    Article  Google Scholar 

  • Robock, A. (2008a). 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64(2), 14–18.

    Article  Google Scholar 

  • Robock, A. (2008b). Whither geoengineering? SCIENCE-NEW YORK THEN WASHINGTON, 320(5880), 1166.

    Article  Google Scholar 

  • Robock, A. (2014a). Geoengineering the climate system. In R. E. Hester & R. M. Harrison (Eds.), Issues in environmental science and technology (pp. 162–185). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Robock, A. (2014b). Stratospheric aerosol geoengineering. In R. E. Hester & R. M. Harrison (Eds.), Geoengineering of the climate (pp. 162–185). Cambridge: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Robock, A., & Kravitz, B. (2013). Use of models, analogs and field-tests for geoengineering research. Opinion Article, Geoengineering Our Climate Working Paper and Opinion Article Series. http://wp.me/p2zsRk-99. Accessed 16 Oct 2016.

  • Robock, A., Oman, L., & Stenchikov, G. L. (2008). Regional climate responses to geoengineering with tropical and Arctic SO2 injections. Journal of Geophysical Research: Atmospheres, 113, D1601–D16101. https://doi.org/10.1029/2008JD010050.

    Article  Google Scholar 

  • Ross, A., & Matthews, H. D. (2009). Climate engineering and the risk of rapid climate change. Environmental Research Letters, 4, 045103.

    Article  Google Scholar 

  • Rowe, G., & Frewer, L. J. (2000). Public participation methods: A framework for evaluation. Science, Technology and Human Values, 25, 3–29.

    Article  Google Scholar 

  • Sarewitz, D. (2010). Not by experts alone. Nature, 466, 688.

    Article  Google Scholar 

  • Schmitz, O. J. (2016a, January 25). How ‘natural geoengineering can help stop global warming’ Yale Environment 360. http://e360.yale.edu/feature/how_natural_geo-engineering_can_help_slow_global_warming/2951/. Accessed 24 Sept 2016.

  • Schmitz, O. J. (2016b, January 25). How ‘natural geoengineering’ can help slow global warming. e360 Yale University. http://e360.yale.edu/feature/how_natural_geo-engineering_can_help_slow_global_warming/2951/. Accessed 23 Sept 2016.

  • Seidenfeld, M. (2000). Empowering stakeholders: Limits on collaboration for flexible regulation. William and Mary Law Review, 41, 411.

    Google Scholar 

  • Shepherd, J., et al. (2009). Geoengineering the climate: Science, governance and uncertainty. London: The Royal Society.

    Google Scholar 

  • Smith, L. A., & Stern, N. (2011). Uncertainty in science and its role in climate policy. Philosophical Transactions of the Royal Society A, 369(1956), 4818–4841.

    Article  Google Scholar 

  • Smoker, R. (2013, March 22). Geoengineering is a dangerous solution to climate change, Huffingtonpost. http://www.huffingtonpost.ca/rachel-smolker/geoengineering-climate-change_b_2907068.html. Accessed 26 Sept 2016.

  • Soden, B. J., Wetherald, R. T., Stenchikov, G. T., & Robock, A. (2002). Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727–730.

    Article  Google Scholar 

  • Solomon, S., & Oceanic, N. (1999). Stratospheric ozone depletion: A review of concepts and history. Review of Geophysics, 37, 275–316.

    Article  Google Scholar 

  • Specter, M. (2012a, May 14). The climate fixers. Annals of Science, The New Yorker. http://www.newyorker.com/magazine/2012/05/14/the-climate-fixers. Accessed 14 Oct 2016.

  • Specter, M. (2012b, October 18). The first geo-vigilante. The Nation. http://www.newyorker.com/news/news-desk/the-first-geo-vigilante. Accessed 5 Oct 2016.

  • SPICE. (2016). Aims and background. http://www.spice.ac.uk/about-us/aims-and-background/. Accessed 19 Sept 2016.

  • Stainforth, D. A., et al. (2007). Confidence, uncertainty and decision-support relevance in climate predictions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1857), 2145–2161.

    Article  Google Scholar 

  • Stern, N. (2016). Economics: Current climate models are grossly misleading. Nature, 530(7591), 407–409.

    Article  Google Scholar 

  • Stevens, B., & Bony, S. (2014). What are climate models missing? Science, 340(6126), 1053–1054.

    Google Scholar 

  • Stolaroff, J. K., Keith, D. W., & Lowry, G. V. (2008). Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environmental Science & Technology, 42(8), 2728–2735.

    Article  Google Scholar 

  • Taubenfeld, R. F., & Taubenfeld, J. (2009). Some international implications of weather modification activities. International Organization, 23(4), 808–833.

    Article  Google Scholar 

  • The Keith Group. (2016). About us. http://keith.seas.harvard.edu. Accessed 1 Sept 2016.

  • The Royal Society. (2009, September). Geoengineering the climate: Science, governance and uncertainty. London: Royal Society of London. https://royalsociety.org/topics-policy/publications/2009/geoengineering-climate/. Accessed 17 Sept 2016.

  • Vidal, J. (2012a). Bill Gates backs climate scientists lobbying for large-scale geoengineering. The Guardian, 6 February 2012. https://www.theguardian.com/environment/2012/feb/06/bill-gates-climate-scientists-geoengineering. Accessed 13 Feb 2017.

  • Vidal, J. (2012b, February 6) Bill Gates backs climate scientists lobbying for large-scale geoengineering. The Guardian. https://www.theguardian.com/environment/2012/feb/06/bill-gates-climate-scientists-geoengineering. Accessed 4 Oct 2012.

  • Webb, M. J., Lambert, F. H., & Gregory, J. M. (2013). Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dynamics, 40, 677. https://doi.org/10.1007/s00382-012-1336-x. Accessed 13 Oct 2016.

    Article  Google Scholar 

  • Weisenstein, D. K., Keither, D. W., & Dykema, J. A. (2015). Solar engineering using solid aerosol in the stratosphere. Atmospheric Chemistry and Physics, 15, 11835–11859.

    Article  Google Scholar 

  • Wentz, F. J., Ricciardulli, L., Hilburn, K., & Mears, C. (2007). How much more rain will global warming bring? Science, 317, 233. https://doi.org/10.1126/science.1140746. Accessed 1 Nov 2016.

    Article  Google Scholar 

  • Wigley, T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science, 314(5798), 452–454.

    Article  Google Scholar 

  • Willoughby, H. E., Jorgensen, D. P., Black, A., & Rosenthal, S. L. (1985). Project STORMFURY: A scientific chronicle 1962–1983. Hurricane Research Division, AOML/NOAA. https://doi.org/10.1175/1520-0477(1985)066<0505:PSASC>2.0.CO;2. Accessed 25 Sept 2016.

    Article  Google Scholar 

  • Winner, L. (1980). Do artifacts have politics? Daedalus, 109, 121–136.

    Google Scholar 

  • World Meteorological Organization (WMO). (2013). 6th Joint Science Committee of the World Weather Research Programme. http://www.wmo.int/pages/prog/arep/wwrp/new/documents/Doc_3_6_weather_mod_2013_Final_tn.pdf. Accessed 3 Oct 2016.

  • Xia, L. (2014). Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research, 119, 8695–8711.

    Google Scholar 

  • Yukimoto, S., & Noda, A. (2002). Improvements of the meteorological research institute global ocean-atmosphere coupled GCM (MRI-CGCM2) and its climate sensitivity. National Institute for Environmental Studies, Tsukuba, Japan, 37, 44.

    Google Scholar 

  • Zhang, Y., & Posch, A. (2014). The wickedness and complexity of decision making in geoengineering. Challenges, 5, 290–408.

    Article  Google Scholar 

  • Zhuo, Z., Gao, C., & Pan, Y. (2014). Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries. Journal of Geophysical Atmospheric Research, 119, 6638–6652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sikka, T. (2019). Geoengineering. In: Climate Technology, Gender, and Justice. SpringerBriefs in Sociology. Springer, Cham. https://doi.org/10.1007/978-3-030-01147-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01147-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01146-8

  • Online ISBN: 978-3-030-01147-5

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics