Skip to main content

Gaussian-Valued Particle Swarm Optimization

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11172))

Included in the following conference series:

  • 1486 Accesses

Abstract

This paper examines the position update equation of the particle swarm optimization (PSO) algorithm, leading to the proposal of a simplified position update based upon a Gaussian distribution. The proposed algorithm, Gaussian-valued particle swarm optimization (GVPSO), generates probabilistic positions by retaining key elements of the canonical update procedure while also removing the need to specify values for the traditional PSO control parameters. Experimental results across a set of 60 benchmark problems indicate that GVPSO outperforms both the standard PSO and the bare bones particle swarm optimization (BBPSO) algorithm, which also employs a Gaussian distribution to generate particle positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Without loss of generality, this assumes that \(c_1(y_{ij}(t) - x_{ij}(t)) > 0\) and \(c_2(\hat{y}_{ij}(t) - x_{ij}(t)) > 0\), otherwise the bounds must be flipped, i.e., 0 becomes the upper bound.

References

  1. van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria (2001)

    Google Scholar 

  2. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006). https://doi.org/10.1016/j.ins.2005.02.003

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonyadi, M., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 1 (2016). https://doi.org/10.1109/TEVC.2016.2605668

    Article  Google Scholar 

  4. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the Workshop on Particle Swarm Optimization, vol. 1, pp. 1–6. Purdue School of Engineering and Technology (2001)

    Google Scholar 

  5. Clerc, M.: Stagnation analysis in particle swarm optimisation or what happens when nothing happens. Technical report 1, HAL (2006)

    Google Scholar 

  6. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 12, pp. 39–43. IEEE (2008). https://doi.org/10.1109/MHS.1995.494215

  8. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation, pp. 84–88. IEEE (2000). https://doi.org/10.1109/CEC.2000.870279

  9. Engelbrecht, A.: Particle swarm optimization: velocity initialization. In: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012). https://doi.org/10.1109/CEC.2012.6256112

  10. Engelbrecht, A.: Particle swarm optimization: global best or local best? In: Proceedings of the 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 124–135. IEEE (2013). https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

  11. Friedman, M.: A comparison of alternative tests of significance for the problem of \(\mathit{m}\) rankings. Ann. Math. Stat. 11(1), 86–92 (1940). https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(32), 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  13. Garden, R.W., Engelbrecht, A.P.: Analysis and classification of optimisation benchmark functions and benchmark suites. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pp. 1641–1649. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900240

  14. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control strategies for particle swarm optimization. Swarm Intell. 10(4), 267–305 (2016). https://doi.org/10.1007/s11721-016-0128-z

    Article  Google Scholar 

  15. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: The sad state of self-adaptive particle swarm optimizers. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, pp. 431–439. IEEE (2016). https://doi.org/10.1109/CEC.2016.7743826

  16. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: An adaptive particle swarm optimization algorithm based on optimal parameter regions. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, pp. 1606–1613. IEEE (2017). https://doi.org/10.1109/SSCI.2017.8285342

  17. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell. 12, 187–226 (2017). https://doi.org/10.1007/s11721-017-0150-9

    Article  Google Scholar 

  18. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.swevo.2018.01.006

    Article  Google Scholar 

  19. Jiang, M., Luo, Y., Yang, S.: Particle swarm optimization - stochastic trajectory analysis and parameter selection. In: Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 179–198. I-Tech Education and Publishing, December 2007. https://doi.org/10.5772/5104

    Google Scholar 

  20. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007). https://doi.org/10.1016/j.ipl.2006.10.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 80–87. IEEE (2003). https://doi.org/10.1109/SIS.2003.1202251

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968

  23. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1671–1676. IEEE (2002). https://doi.org/10.1109/CEC.2002.1004493

  24. Leonard, B.J., Engelbrecht, A.P.: On the optimality of particle swarm parameters in dynamic environments. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, pp. 1564–1569. IEEE (2013). https://doi.org/10.1109/CEC.2013.6557748

  25. Leu, M.S., Yeh, M.F.: Grey particle swarm optimization. Appl. Soft Comput. 12(9), 2985–2996 (2012). https://doi.org/10.1016/j.asoc.2012.04.030

    Article  Google Scholar 

  26. Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global optimization problems. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(3), 627–646 (2012). https://doi.org/10.1109/TSMCB.2011.2171946

    Article  Google Scholar 

  27. Li, X., Fu, H., Zhang, C.: A self-adaptive particle swarm optimization algorithm. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering, vol. 5, pp. 186–189. IEEE (2008). https://doi.org/10.1109/CSSE.2008.142

  28. Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput. 23(2), 187–216 (2015). https://doi.org/10.1162/EVCO_a_00129

    Article  Google Scholar 

  29. Montes de Oca, M.A., Peña, J., Stützle, T., Pinciroli, C., Dorigo, M.: Heterogeneous particle swarm optimizers. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 698–705. IEEE (2009). https://doi.org/10.1109/CEC.2009.4983013

  30. Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous PSO for real-parameter optimization. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, pp. 361–368. IEEE (2013). https://doi.org/10.1109/CEC.2013.6557592

  31. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011). https://doi.org/10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  32. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004). https://doi.org/10.1109/TEVC.2004.826071

    Article  Google Scholar 

  33. Shaffer, J.P.: Modified sequentially rejective multiple test procedures. J. Am. Stat. Assoc. 81(395), 826–831 (1986). https://doi.org/10.1080/01621459.1986.10478341

    Article  MATH  Google Scholar 

  34. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73. IEEE (1998). https://doi.org/10.1109/ICEC.1998.699146

  35. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1945–1950. IEEE (1999). https://doi.org/10.1109/CEC.1999.785511

  36. Tanweer, M., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015). https://doi.org/10.1016/j.ins.2014.09.053

    Article  MathSciNet  MATH  Google Scholar 

  37. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003). https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011). https://doi.org/10.1016/j.ins.2010.07.013

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, G.: An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 219(9), 4560–4569 (2013). https://doi.org/10.1016/j.amc.2012.10.067

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X., Yuan, J., Yuan, J., Mao, H.: A modified particle swarm optimizer with dynamic adaptation. Appl. Math. Comput. 189(2), 1205–1213 (2007). https://doi.org/10.1016/j.amc.2006.12.045

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, W., Ma, D., Wei, J.J., Liang, H.F.: A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst. Appl. 41(7), 3576–3584 (2014). https://doi.org/10.1016/j.eswa.2013.10.061

    Article  Google Scholar 

  42. van Zyl, E., Engelbrecht, A.: Comparison of self-adaptive particle swarm optimizers. In: Proceedings of the 2014 IEEE Symposium on Swarm Intelligence, pp. 1–9. IEEE (2014). https://doi.org/10.1109/SIS.2014.7011775

Download references

Acknowledgments

This work is based on the research supported by the National Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions, findings and conclusions or recommendations expressed in this article is that of the author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever in this regard. This work is also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Robert Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P. (2018). Gaussian-Valued Particle Swarm Optimization. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics