Skip to main content

Optimal Control Using Pontryagin’s Maximum Principle and Dynamic Programming

  • Chapter
Automotive Model Predictive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 402))

Abstract

This chapter describes the application of Pontryagin’s Maximum Principle and Dynamic Programming for vehicle drivingwith minimum fuel consumption. The focus is on minimum-fuel accelerations. For the fuel consumption modeling, a six-parameter polynomial approximation is proposed. With the Maximum Principle, this consumption model yields optimal accelerations with a linearly decreasing acceleration as a function of the velocity. This linear acceleration behavior is also observed in real traffic situations by other researchers. Dynamic Programming is implemented with a backward recursion on a specially chosen distance grid. This grid enables the calculation of realistic gear shifting behaviour during vehicle accelerations. Gear shifting dynamics are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beakey, J.: Acceleration and Deceleration Characteristics of Private Passenger Vehicles. In: Proc. 18th Annual Meeting Part I: Highway Research Board, Washington DC, USA, pp. 81–89 (1938)

    Google Scholar 

  2. Bellis, W.R.: Capacity of Traffic Signals and Traffic Signal Timing. Highway Research Board Bulletin 271, 45–67 (1960)

    Google Scholar 

  3. Bellman, R.E.: Dynamic Programming. University Press, Princeton (1957)

    Google Scholar 

  4. Bemporad, A., Borodani, P., Mannelli, M.: Hybrid control of an automotive robotized gearbox for reduction of consumptions and emissions. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 81–96. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bertsekas, D.: Dynamic Programming and Optimal Control, 3rd edn., vol. 2. Athena Scientific, Belmont (2007)

    Google Scholar 

  6. Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Computers and Chemical Engineering 8, 243–248 (1984)

    Article  Google Scholar 

  7. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proc. 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, Oxford (1984)

    Google Scholar 

  8. Bonneson, J.A.: Modeling Queued Driver Behavior at Signalized Junctions. Transportation Research Record 1365, 99–107 (1992)

    Google Scholar 

  9. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Wiley, New York (1975)

    Google Scholar 

  10. Chang, D.J., Morlok, E.K.: Vehicle Speed Profiles to Minimize Work and Fuel Consumption. J. Transportation Engineering 131(3), 173–192 (2005)

    Article  Google Scholar 

  11. Chang, M.F., Evans, L., Herman, R., Wasielewski, P.: The Influence of Vehicle Characteristics, Driver Behavior, and Ambient Temperature on Gasoline Consumption in Urban Traffic. Technical Report GMR-1950, General Motors Research Laboratories (1976)

    Google Scholar 

  12. Chang, M.F., Herman, R.: Driver Response to Different Driving Instructions: Effect on Speed, Acceleration and Fuel Consumption. Technical Report GMR-3090, General Motors Research Laboratories (1979)

    Google Scholar 

  13. CIECA. Internal project on Eco-driving in category B driver training & the driving test. Final report, CIECA, November 5 (2007)

    Google Scholar 

  14. Dockerty, A.: Accelerations of Queue Leaders from Stop Lines. Traffic Engineering and Control 8(3), 150–155 (1966)

    Google Scholar 

  15. El-Shawarby, I., Ahn, K., Rakha, H.: Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions. Transportation Research Part D: Transport and Environment 10(1), 13–30 (2005)

    Article  Google Scholar 

  16. Evans, L.: Driver Behavior Effects on Fuel Consumption in Urban Driving. Human Factors 21, 389–398 (1979)

    Google Scholar 

  17. Evans, L., Herman, R.: Automobile Fuel Economy on Fixed Urban Driving Schedules. Transportation Science 12, 137–152 (1978)

    Article  Google Scholar 

  18. Gillespie, T.D.: Start-Up Accelerations of Heavy Trucks on Grades. Transportation Research Record 1052, 107–112 (1986)

    Google Scholar 

  19. Hellström, E.: Explicit use of road topography for model predictive cruise control in heavy trucks. Master’s thesis, Vehicular Systems, Dept. of Electrical Engineering at Linköpings universitet (2005); Reg nr: LiTH-ISY-EX–05/3660–SE

    Google Scholar 

  20. Hooker, J.N.: Optimal Driving for Single-Vehicle Fuel Economy. Transportation Research Part A: General 22(3), 183–201 (1988)

    Article  Google Scholar 

  21. Hooker, J.N., Rose, A.B., Roberts, G.F.: Optimal Control of Automobiles for Fuel Economy. Transportation Science 17(2), 146–167 (1983)

    Article  Google Scholar 

  22. Jahns, G., Forster, K.J., Hellickson, M.: Computer simulation of diesel engine performance. Trans. American Society of Agricultural Engineers 33(3), 764–770 (1990)

    Google Scholar 

  23. Kraft, D.: On converting optimal control problems into nonlinear programming problems. In: Schittkowski, K. (ed.) Computational Mathematical Programming. NATO ASI, vol. F15, pp. 261–280. Springer, Heidelberg (1985)

    Google Scholar 

  24. Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equations. Pittman (1982)

    Google Scholar 

  25. Long, G.: Acceleration Characteristics of Starting Vehicles. Transportation Research Record 1737, 58–70 (2000)

    Article  Google Scholar 

  26. Monastyrsky, V.V., Golownykh, I.M.: Rapid Computation of Optimal Control for Vehicles. Transportation Research Part B: Methodological 27(3), 219–227 (1993)

    Article  Google Scholar 

  27. Nielsen, L., Kiencke, U.: Automotive control systems. Springer, Berlin (2000)

    Google Scholar 

  28. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Miscenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, Chichester (1962)

    MATH  Google Scholar 

  29. Post, K., Kent, J.H., Tomlin, J., Carruthers, N.: Vehicle characterization and fuel consumption prediction using maps and power demand models. Int. J. Vehicle Design 6(1), 72–92 (1985)

    Google Scholar 

  30. Saerens, B., Vandersteen, J., Persoons, T., Swevers, J., Diehl, M., Van den Bulck, E.: Minimization of the fuel consumption of a gasoline engine using dynamic optimization. Applied Energy 86(9), 1582–1588 (2009)

    Article  Google Scholar 

  31. Sargent, R.W.H., Sullivan, G.R.: The development of an efficient optimal control package. In: Stoer, J. (ed.) Proc. 8th IFIP Conf. Optimization Techniques. Springer, Heidelberg (1977)

    Google Scholar 

  32. Schwarzkopf, A.B., Leipnik, R.B.: Control of Highway Vehicles for Minimum Fuel Consumption over Varying Terrain. Transportation Research 11, 279–286 (1977)

    Article  Google Scholar 

  33. Stoicescu, A.P.: On Fuel-optimal Velocity Control of a Motor Vehicle. Int. J. Vehicle Design 16(2-3), 229–256 (1995)

    Google Scholar 

  34. van der Voort, M., Dougherty, M.S., van Maarseveen, M.: A prototype fuel-efficiency support tool. Transportation Research Part C: Emerging Technologies 9, 279–296 (2001)

    Article  Google Scholar 

  35. Wang, G., Zoerb, G.C.: Determination of optimal working points for diesel engines. Trans. American Society of Agricultural Engineers 32(5), 1519–1522 (1989)

    Google Scholar 

  36. Waters, M.H.L., Laker, I.B.: Research on Fuel Conservation for Cars. Technical Report 921, Transport and Road Research Laboratory, Crowthorne, England (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Saerens, B., Diehl, M., Van den Bulck, E. (2010). Optimal Control Using Pontryagin’s Maximum Principle and Dynamic Programming. In: del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (eds) Automotive Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 402. Springer, London. https://doi.org/10.1007/978-1-84996-071-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-071-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-070-0

  • Online ISBN: 978-1-84996-071-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics