Skip to main content

Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease

  • Chapter
  • 246 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Labarthe DA, Kosinetz C, Jones TM. Epidemiology. In: Garson Jr. A, Bricker JT, McNamara DG, eds. The Science and Practice of Pediatric Cardiology. Philadelphia: Lea & Febiger, 1990:135–151.

    Google Scholar 

  2. Olson EN, Martin JF, Schneider MD. Cardiac growth and development. In: Willerson JT, Cohn JN, eds. Cardiovascular Medicine. New York: Churchill Livingstone, 1995:741–751.

    Google Scholar 

  3. Olson EN, Schneider MD. Sizing up the heart: Development redux in disease. Genes Dev 2003;17:1937–1956.

    PubMed  CAS  Google Scholar 

  4. Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 2003;258:1–19.

    PubMed  CAS  Google Scholar 

  5. Olson EN. A decade of discoveries in cardiac biology. Nat Med 2004;10:467–474.

    PubMed  CAS  Google Scholar 

  6. Auman HJ, Yelon D. Vertebrate organogenesis: getting the heart into shape. Curr Biol 2004;14:R152–153.

    PubMed  CAS  Google Scholar 

  7. Christoffels VM, Burch JB, Moorman AF. Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med 2004;14:301–307.

    PubMed  Google Scholar 

  8. Harvey RP, Rosenthal N, eds. Heart Development. San Diego, CA: Academic Press, 1998.

    Google Scholar 

  9. Bodmer R, Venkatesh TV. Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet 1998;22:181–186.

    PubMed  CAS  Google Scholar 

  10. Lilly B, Zhao B, Ranganayakulu G, et al. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 1995;267:688–693.

    PubMed  CAS  Google Scholar 

  11. Wu X, Golden K, Bodmer R. Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 1995;169:619–628.

    PubMed  CAS  Google Scholar 

  12. Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998;14:167–196.

    PubMed  CAS  Google Scholar 

  13. Nusslein-Volhard C. Of flies and fishes. Science 1994;266:572–574.

    PubMed  CAS  Google Scholar 

  14. Kim YO, Park SJ, Balaban RS, et al. A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci USA 2004;101:159–164.

    PubMed  CAS  Google Scholar 

  15. Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development 1997;124:2099–2117.

    PubMed  CAS  Google Scholar 

  16. Sehnert AJ, Stainier DY. A window to the heart: can zebrafish mutants help us understand heart disease in humans? Trends Genet 2002;18:491–494.

    PubMed  CAS  Google Scholar 

  17. Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 2004;22:595–599.

    PubMed  CAS  Google Scholar 

  18. Peterson RT, Mably JD, Chen JN, et al. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr Biol 2001;11:1481–1491.

    PubMed  CAS  Google Scholar 

  19. Reifers F, Bohli H, Walsh EC, et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 1998;125:2381–2395.

    PubMed  CAS  Google Scholar 

  20. Ando H, Furuta T, Tsien RY, et al. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 2001;28:317–325.

    PubMed  CAS  Google Scholar 

  21. Skarnes WC, Auerbach BA, Joyner AL. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev 1992;6:903–918.

    PubMed  CAS  Google Scholar 

  22. Wurst W, Rossant J, Prideaux V, et al. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 1995;139:889–899.

    PubMed  CAS  Google Scholar 

  23. Zambrowicz BP, Friedrich GA, Buxton EC, et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 1998;392:608–611.

    PubMed  CAS  Google Scholar 

  24. Hansen J, Floss T, Van Sloun P, et al. A large-scale, genedriven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci USA 2003;100:9918–9922.

    PubMed  CAS  Google Scholar 

  25. Skarnes WC, von Melchner H, Wurst W, et al. A public gene trap resource for mouse functional genomics. Nat Genet 2004;36:543–544.

    PubMed  CAS  Google Scholar 

  26. Schnutgen F, De-Zolt S, Van Sloun P, et al. Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci USA 2005;102:7221–7226.

    PubMed  Google Scholar 

  27. Justice MJ, Zheng B, Woychik RP, et al. Using targeted large deletions and high-efficiency N-ethyl-N-nitrosourea mutagenesis for functional analyses of the mammalian genome. Methods 1997;13:423–436.

    PubMed  CAS  Google Scholar 

  28. Kile BT, Hentges KE, Clark AT, et al. Functional genetic analysis of mouse chromosome 11. Nature 2003;425:81–86.

    PubMed  CAS  Google Scholar 

  29. Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994;8:2293–2301.

    PubMed  CAS  Google Scholar 

  30. Zambrowicz BP, Abuin A, Ramirez-Solis R, et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 2003;100:14109–14114.

    PubMed  Google Scholar 

  31. Yu Q, Shen Y, Chatterjee B, et al. ENU induced mutations causing congenital cardiovascular anomalies. Development 2004;131:6211–6223.

    PubMed  CAS  Google Scholar 

  32. Chen Y, Vivian JL, Magnuson T. Gene-based chemical mutagenesis in mouse embryonic stem cells. Methods Enzymol 2003;365:406–415.

    PubMed  CAS  Google Scholar 

  33. Vivian JL, Chen Y, Yee D, et al. An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N-nitrosourea-mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 2002;99:15542–15547.

    PubMed  CAS  Google Scholar 

  34. Nascone N, Mercola M. An inductive role for the endoderm in Xenopus cardiogenesis. Development 1995;121:515–523.

    PubMed  CAS  Google Scholar 

  35. Arai A, Yamamoto K, Toyama J. Murine cardiac progenitor cells require visceral embryonic endoderm and primitive streak for terminal differentiation. Dev Dyn 1997;210:344–353.

    PubMed  CAS  Google Scholar 

  36. Foley A, Mercola M. Heart induction: embryology to cardiomyocyte regeneration. Trends Cardiovasc Med 2004;14:121–125.

    PubMed  CAS  Google Scholar 

  37. Wei L, Roberts W, Wang L, et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 2001;128:2953–2962.

    PubMed  CAS  Google Scholar 

  38. Li S, Zhou D, Lu MM, et al. Advanced cardiac morphogenesis does not require heart tube fusion. Science 2004;305:1619–1622.

    PubMed  CAS  Google Scholar 

  39. Kupperman E, An S, Osborne N, et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 2000;406:192–195.

    PubMed  CAS  Google Scholar 

  40. Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell 2004;6:371–382.

    PubMed  CAS  Google Scholar 

  41. Olson EN, Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 1994;8:1–8.

    PubMed  CAS  Google Scholar 

  42. Evans SM, Tai LJ, Tan VP, et al. Heterokaryons of cardiac myocytes and fibroblasts reveal the lack of dominance of the cardiac muscle phenotype. Mol Cell Biol 1994;14:4269–4279.

    PubMed  CAS  Google Scholar 

  43. Molkentin JD, Black BL, Martin JF, et al. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 1995;83:1125–1136.

    PubMed  CAS  Google Scholar 

  44. Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 1996;93:9366–9373.

    PubMed  CAS  Google Scholar 

  45. Edmondson DG, Lyons GE, Martin JF, et al. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994;120:1251–1263.

    PubMed  CAS  Google Scholar 

  46. Ticho BS, Stainier DY, Fishman MC, et al. Three zebrafish MEF2 genes delineate somitic and cardiac muscle development in wild-type and mutant embryos. Mech Dev 1996;59:205–218.

    PubMed  CAS  Google Scholar 

  47. Molkentin JD, Firulli AB, Black BL, et al. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol 1996;16:3814–3824.

    PubMed  CAS  Google Scholar 

  48. Lin Q, Schwarz J, Bucana C, et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997;276:1404–1407.

    PubMed  CAS  Google Scholar 

  49. Lin Q, Lu JR, Yanagisawa H, et al. Requirement of the MADSbox transcription factor MEF2C for vascular development. Development 1998;125:4565–4574.

    PubMed  CAS  Google Scholar 

  50. Naya FJ, Black BL, Wu H, et al. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 2002;8:1303–1309.

    PubMed  CAS  Google Scholar 

  51. Rudnicki MA, Schnegelsberg PNJ, Stead RH, et al. MyoD or myf-5 is required for the formation of skeletal muscle. Cell 1993;75:1351–1359.

    PubMed  CAS  Google Scholar 

  52. Rawls A, Valdez MR, Zhang W, et al. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 1998;125:2349–2358.

    PubMed  CAS  Google Scholar 

  53. Lilly B, Galewsky S, Firulli AB, et al. D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci USA 1994;91:5662–5666.

    PubMed  CAS  Google Scholar 

  54. Nguyen HT, Bodmer R, Abmayr SM, et al. D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proc Natl Acad Sci USA 1994;91:7520–7524.

    PubMed  CAS  Google Scholar 

  55. Bour BA, O’Brien MA, Lockwood WL, et al. Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev 1995;9:730–741.

    PubMed  CAS  Google Scholar 

  56. Ranganayakulu G, Zhao B, Dokidis A, et al. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol 1995;171:169–181.

    PubMed  CAS  Google Scholar 

  57. Kaushal S, Schneider JW, Nadal-Ginard B, et al. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science 1994;266:1236–1240.

    PubMed  CAS  Google Scholar 

  58. Harvey RP. NK-2 homeobox genes and heart development. Dev Biol 1996;178:203–216.

    PubMed  CAS  Google Scholar 

  59. Azpiazu N, Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 1993;7:1325–1340.

    PubMed  CAS  Google Scholar 

  60. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993;118:719–729.

    PubMed  CAS  Google Scholar 

  61. Schwartz RJ, Olson EN. Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development 1999;126:4187–4192.

    PubMed  CAS  Google Scholar 

  62. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995;9:1654–1666.

    PubMed  CAS  Google Scholar 

  63. Ranganayakulu G, Elliott DA, Harvey RP, et al. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 1998;125:3037–3048.

    PubMed  CAS  Google Scholar 

  64. Park M, Lewis C, Turbay D, et al. Differential rescue of visceral and cardiac defects in drosophila by vertebrate tinman-related genes. Proc Natl Acad Sci USA 1998;95:9366–9371.

    PubMed  CAS  Google Scholar 

  65. Cleaver OB, Patterson KD, Krieg PA. Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 1996;122:3549–3556.

    PubMed  CAS  Google Scholar 

  66. Chen JN, Fishman MC. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 1996;122:3809–3816.

    PubMed  CAS  Google Scholar 

  67. Fu YC, Yan W, Mohun TJ, et al. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998;125:4439–4449.

    PubMed  CAS  Google Scholar 

  68. Grow MW, Krieg PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev Biol 1998;204:187–196.

    PubMed  CAS  Google Scholar 

  69. Gajewski K, Kim Y, Lee YM, et al. D-mef2 is a target for tinman activation during Drosophila heart development. EMBO J 1997;16:515–522.

    PubMed  CAS  Google Scholar 

  70. Chen CY, Schwartz RJ. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem 1995;270:15628–15633.

    PubMed  CAS  Google Scholar 

  71. Bao ZZ, Bruneau BG, Seidman JG, et al. Regulation of chamberspecific gene expression in the developing heart by Irx4. Science 1999;283:1161–1164.

    PubMed  CAS  Google Scholar 

  72. Bruneau BG, Bao ZZ, Fatkin D, et al. Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol Cell Biol 2001;21:1730–1736.

    PubMed  CAS  Google Scholar 

  73. Grepin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 1997;124:2387–2395.

    PubMed  CAS  Google Scholar 

  74. Ip HS, Wilson DB, Heikinheimo M, et al. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol 1994;14:7517–7526.

    PubMed  CAS  Google Scholar 

  75. Molkentin JD, Kalvakolanu DV, Markham BE. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 1994;14:4947–4957.

    PubMed  CAS  Google Scholar 

  76. Searcy RD, Vincent EB, Liberatore CM, et al. A GATAdependent Nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 1998;125:4461–4470.

    PubMed  CAS  Google Scholar 

  77. Lien CL, Wu C, Mercer B, et al. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 1999;126:75–84.

    PubMed  CAS  Google Scholar 

  78. Jiang Y, Evans T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol 1996;174:258–270.

    PubMed  CAS  Google Scholar 

  79. Gove C, Walmsley M, Nijjar S, et al. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors (Vol 16, pg 355, 1997). EMBO J 1997;16:1806–1807.

    CAS  Google Scholar 

  80. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–228.

    PubMed  CAS  Google Scholar 

  81. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997;11:1048–1060.

    PubMed  CAS  Google Scholar 

  82. Molkentin JD, Lin Q, Duncan SA, et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 1997;11:1061–1072.

    PubMed  CAS  Google Scholar 

  83. Morrisey EE, Tang ZH, Sigrist K, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998;12:3579–3590.

    PubMed  CAS  Google Scholar 

  84. Koutsourakis M, Langeveld A, Patient R, et al. The transcription factor GATA6 is essential for early extraembryonic development (Vol 126, pg 723–732, 1999). Development 1999;126:U4+.

    Google Scholar 

  85. Durocher D, Charron F, Warren R, et al. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 1997;16:5687–5696.

    PubMed  CAS  Google Scholar 

  86. Sepulveda JL, Belaguli N, Nigam V, et al. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 1998;18:3405–3415.

    PubMed  CAS  Google Scholar 

  87. Lee Y, Shioi T, Kasahara H, et al. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 1998;18:3120–3129.

    PubMed  CAS  Google Scholar 

  88. Tevosian SG, Deconinck AE, Cantor AB, et al. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci USA 1999;96:950–955.

    PubMed  CAS  Google Scholar 

  89. Svensson EC, Tufts RL, Polk CE, et al. Molecular cloning of FOG-2: A modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 1999;96:956–961.

    PubMed  CAS  Google Scholar 

  90. Lu JR, McKinsey TA, Xu HT, et al. FOG-2, a heart-and brainenriched cofactor for GATA transcription factors. Mol Cell Biol 1999;19:4495–4502.

    PubMed  CAS  Google Scholar 

  91. Cserjesi P, Brown D, Lyons GE, et al. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol 1995;170:664–678.

    PubMed  CAS  Google Scholar 

  92. Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis. Science 1995;270:1995–1999.

    PubMed  CAS  Google Scholar 

  93. Hollenberg SM, Sternglanz R, Cheng PF, et al. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 1995;15:3813–3822.

    PubMed  CAS  Google Scholar 

  94. Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 1997;11:1357–1369.

    PubMed  CAS  Google Scholar 

  95. Thomas T, Yamagishi H, Overbeek PA, et al. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol 1998;196:228–236.

    PubMed  CAS  Google Scholar 

  96. Srivastava D, Thomas T, Lin Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 1997;16:154–160.

    PubMed  CAS  Google Scholar 

  97. Firulli AB, McFadden DG, Lin Q, et al. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet 1998;18:266–270.

    PubMed  CAS  Google Scholar 

  98. Riley P, Anson-Cartwright L, Cross JC. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 1998;18:271–275.

    PubMed  CAS  Google Scholar 

  99. Charite J, McFadden DG, Merlo G, et al. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev 2001;15:3039–3049.

    PubMed  CAS  Google Scholar 

  100. Yanagisawa H, Clouthier DE, Richardson JA, et al. Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in craniofacial development. Development 2003;130:1069–1078.

    PubMed  CAS  Google Scholar 

  101. McFadden DG, Barbosa AC, Richardson JA, et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 2005;132:189–201.

    PubMed  CAS  Google Scholar 

  102. Yamagishi H, Garg V, Matsuoka R, et al. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999;283:1158–1161.

    PubMed  CAS  Google Scholar 

  103. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27:286–291.

    PubMed  CAS  Google Scholar 

  104. Lindsay E, Vitelli F, Su H, et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.

    PubMed  CAS  Google Scholar 

  105. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104:619–629.

    PubMed  CAS  Google Scholar 

  106. Croissant JD, Kim JH, Eichele G, et al. Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev Biol 1996;177:250–264.

    PubMed  CAS  Google Scholar 

  107. Belaguli NS, Schildmeyer LA, Schwartz RJ. Organization and myogenic restricted expression of the murine serum response factor gene-a role for autoregulation. J Biol Chem 1997;272:18222–18231.

    PubMed  CAS  Google Scholar 

  108. Sartorelli V, Webster KA, Kedes L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev 1990;4:1811–1822.

    PubMed  CAS  Google Scholar 

  109. Lee TC, Chow KL, Fang P, et al. Activation of skeletal alphaactin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 1991;11:5090–5100.

    PubMed  CAS  Google Scholar 

  110. Sartorelli V, Hong NA, Bishopric NH, et al. Myocardial activation of the human cardiac alpha-actin promoter by helix-loophelix proteins. Proc Natl Acad Sci USA 1992;89:4047–4051.

    PubMed  CAS  Google Scholar 

  111. MacLellan WR, Lee TC, Schwartz RJ, et al. Transforming growth factor-beta response elements of the skeletal alphaactin gene: Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J Biol Chem 1994;269:16754–16760.

    PubMed  CAS  Google Scholar 

  112. Gauthier-Rouviere C, Vandromme M, Tuil D, et al. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell 1996;7:719–729.

    PubMed  CAS  Google Scholar 

  113. Whitmarsh AJ, Yang SH, Su MSS, et al. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 1997;17:2360–2371.

    PubMed  CAS  Google Scholar 

  114. Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J 1995;14:4905–4913.

    PubMed  CAS  Google Scholar 

  115. Chen CY, Schwartz RJ. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 1996;16:6372–6384.

    PubMed  CAS  Google Scholar 

  116. Arsenian S, Weinhold B, Oelgeschlager M, et al. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 1998;17:6289–6299.

    PubMed  CAS  Google Scholar 

  117. Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 2000;26:113–115.

    PubMed  CAS  Google Scholar 

  118. Agah R, Frenkel PA, French BA, et al. Gene recombination in postmitotic cells: targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest 1997;100:169–179.

    PubMed  CAS  Google Scholar 

  119. Guillemin K, Groppe J, Ducker K, et al. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 1996;122:1353–1362.

    PubMed  CAS  Google Scholar 

  120. Montagne J, Groppe J, Guillemin K, et al. The Drosophila serum response factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development 1996;122:2589–2597.

    PubMed  CAS  Google Scholar 

  121. Parlakian A, Tuil D, Hamard G, et al. Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Mol Cell Biol 2004;24:5281–5289.

    PubMed  CAS  Google Scholar 

  122. Miano JM, Ramanan N, Georger MA, et al. Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci USA 2004;101:17132–17137.

    PubMed  CAS  Google Scholar 

  123. Niu Z, Yu W, Zhang SX, et al. Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 2005.

    Google Scholar 

  124. Wang D, Chang PS, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001;105:851–862.

    PubMed  CAS  Google Scholar 

  125. Wang DZ, Li S, Hockemeyer D, et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA 2002;99:14855–14860.

    PubMed  CAS  Google Scholar 

  126. Aravind L, Koonin EV. SAP-a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 2000;25:112–114.

    PubMed  CAS  Google Scholar 

  127. Wang Z, Wang DZ, Pipes GC, et al. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA 2003;100:7129–7134.

    PubMed  CAS  Google Scholar 

  128. Small EM, Warkman AS, Wang DZ, et al. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development 2005;132:987–997.

    PubMed  CAS  Google Scholar 

  129. Li S, Wang DZ, Wang Z, et al. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci USA 2003;100:9366–9370.

    PubMed  CAS  Google Scholar 

  130. Chen F, Kook H, Milewski R, et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 2002;110:713–723.

    PubMed  CAS  Google Scholar 

  131. Shin CH, Liu ZP, Passier R, et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 2002;110:725–735.

    PubMed  CAS  Google Scholar 

  132. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997;15:30–35.

    PubMed  CAS  Google Scholar 

  133. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997;15:21–29.

    PubMed  Google Scholar 

  134. Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 2001;28:276–280.

    PubMed  CAS  Google Scholar 

  135. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003;424:443–447.

    PubMed  CAS  Google Scholar 

  136. Harrelson Z, Kelly RG, Goldin SN, et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 2004;131:5041–5052.

    PubMed  CAS  Google Scholar 

  137. Singh MK, Christoffels VM, Dias JM, et al. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 2005;132:2697–2707.

    PubMed  CAS  Google Scholar 

  138. Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 2005;132:2451–2462.

    PubMed  CAS  Google Scholar 

  139. Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 2005;132:2463–2474.

    PubMed  CAS  Google Scholar 

  140. Cai CL, Zhou W, Yang L, et al. T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 2005;132:2475–2487.

    PubMed  CAS  Google Scholar 

  141. Brown DD, Martz SN, Binder O, et al. Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 2005;132:553–563.

    PubMed  CAS  Google Scholar 

  142. Rehorn KP, Thelen H, Michelson AM, et al. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 1996;122:4023–4031.

    PubMed  CAS  Google Scholar 

  143. Frasch M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 1995;374:464–467.

    PubMed  CAS  Google Scholar 

  144. Gisselbrecht S, Skeath JB, Doe CQ, et al. heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev 1996;10:3003–3017.

    PubMed  CAS  Google Scholar 

  145. Park M, Wu X, Golden K, et al. The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 1996;177:104–116.

    PubMed  CAS  Google Scholar 

  146. Lee HH, Frasch M. Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development 2005;132:1429–1442.

    PubMed  CAS  Google Scholar 

  147. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11:3286–3305.

    PubMed  CAS  Google Scholar 

  148. Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet 1997;13:14–21.

    PubMed  CAS  Google Scholar 

  149. Sugi Y, Lough J. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994;200:155–162.

    PubMed  CAS  Google Scholar 

  150. Lough J, Barron M, Brogley M, et al. Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in nonprecardiac embryonic mesoderm. Dev Biol 1996;178:198–202.

    PubMed  CAS  Google Scholar 

  151. Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGF beta and bone morphogenetic proteins. Dev Biol 1998;204:407–419.

    PubMed  CAS  Google Scholar 

  152. Schultheiss TM, Lassar AB. Induction of chick cardiac myogenesis by bone morphogenetic proteins. Cold Spring Harb Symp Quant Biol 1997;62:413–419.

    PubMed  CAS  Google Scholar 

  153. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997;11:451–462.

    PubMed  CAS  Google Scholar 

  154. Andree B, Duprez D, Vorbusch B, et al. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998;70:119–131.

    PubMed  CAS  Google Scholar 

  155. Johansson BM, Wiles MV. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 1995;15:141–151.

    PubMed  CAS  Google Scholar 

  156. Logan M, Mohun T. Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos. Development 1993;118:865–875.

    PubMed  CAS  Google Scholar 

  157. Mangiacapra FJ, Fransen ME, Lemanski LF. Activin A and transforming growth factor-beta stimulate heart formation in axolotls but not rescue cardiac lethal mutants. Cell Tissue Res 1995;282:227–236.

    PubMed  CAS  Google Scholar 

  158. van den Eijnden-van Raaij AJ, van Achterberg TA, van der Kruijssen CM, et al. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev 1991;33:157–165.

    PubMed  Google Scholar 

  159. Vassalli A, Matzuk MM, Gardner HA, et al. Activin/inhibin beta B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 1994;8:414–427.

    PubMed  CAS  Google Scholar 

  160. Matzuk MM, Kumar TR, Vassalli A, et al. Functional analysis of activins during mammalian development. Nature 1995;374:354–356.

    PubMed  CAS  Google Scholar 

  161. Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 1995;374:356–360.

    PubMed  CAS  Google Scholar 

  162. Oh SP, Li E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 1997;11:1812–1826.

    PubMed  CAS  Google Scholar 

  163. Gu ZY, Reynolds EM, Song JH, et al. The type I serine threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 1999;126:2551–2561.

    PubMed  CAS  Google Scholar 

  164. Gu ZY, Nomura M, Simpson BB, et al. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 1998;12:844–857.

    PubMed  CAS  Google Scholar 

  165. Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 1998;393:786–790.

    PubMed  CAS  Google Scholar 

  166. Heyer J, Escalante-Alcalde D, Lia M, et al. Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci USA 1999;96:12595–12600.

    PubMed  CAS  Google Scholar 

  167. Dickson MC, Martin JS, Cousins FM, et al. Defective haematopoiesis and vasculogenesis in transforming growth factorbeta 1 knock out mice. Development 1995;121:1845–1854.

    PubMed  CAS  Google Scholar 

  168. Bonyadi M, Rusholme SAB, Cousins FM, et al. Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 1997;15:207–211.

    PubMed  CAS  Google Scholar 

  169. Sanford LP, Ormsby I, GittenbergerdeGroot AC, et al. TGF beta 2 knockout mice have multiple developmental defects that are nonoverlapping with other TGF beta knockout phenotypes. Development 1997;124:2659–2670.

    PubMed  CAS  Google Scholar 

  170. Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995;11:409–414.

    PubMed  CAS  Google Scholar 

  171. Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005;37:275–281.

    PubMed  CAS  Google Scholar 

  172. Mishina Y, Suzuki A, Ueno N, et al. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995;9:3027–3037.

    PubMed  CAS  Google Scholar 

  173. Davis S, Miura S, Hill C, et al. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev Biol 2004;270:47–63.

    PubMed  CAS  Google Scholar 

  174. Stottmann RW, Choi M, Mishina Y, et al. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development 2004;131:2205–2218.

    PubMed  CAS  Google Scholar 

  175. Winnier G, Blessing M, Labosky PA, et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995;9:2105–2116.

    PubMed  CAS  Google Scholar 

  176. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996;122:2977–2986.

    PubMed  CAS  Google Scholar 

  177. Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 2005;23:607–611.

    PubMed  CAS  Google Scholar 

  178. Zhu X, Sasse J, McAllister D, et al. Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev Dyn 1996;207:429–438.

    PubMed  CAS  Google Scholar 

  179. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85:507–514

    PubMed  CAS  Google Scholar 

  180. Pasumarthi KB, Kardami E, Cattini PA. High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res 1996;78:126–136.

    PubMed  CAS  Google Scholar 

  181. Weiner HL, Swain JL. Acidic fibroblast growth factor mRNA is expressed by cardiac myocytes in culture and the protein is localized to the extracellular matrix. Proc Natl Acad Sci USA 1989;86:2683–2687.

    PubMed  CAS  Google Scholar 

  182. Hartung H, Feldman B, Lovec H, et al. Murine FGF-12 and FGF-13: Expression in embryonic nervous system, connective tissue and heart. Mech Dev 1997;64:31–39.

    PubMed  CAS  Google Scholar 

  183. Hu MC, Qiu WR, Wang YP, et al. FGF-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Mol Cell Biol 1998;18:6063–6074.

    PubMed  CAS  Google Scholar 

  184. Kok LD, Tsui SK, Waye M, et al. Cloning and characterization of a cDNA encoding a novel fibroblast growth factor preferentially expressed in human heart. Biochem Biophys Res Commun 1999;255:717–721.

    PubMed  CAS  Google Scholar 

  185. Mason IJ, Fuller-Pace F, Smith R, et al. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelialmesenchymal interactions. Mech Dev 1994;45:15–30.

    PubMed  CAS  Google Scholar 

  186. Zhou M, Sutliff RL, Paul RJ, et al. Fibroblast growth factor 2 control of vascular tone. Nature Med 1998;4:201–207.

    PubMed  CAS  Google Scholar 

  187. Deng CX, Bedford M, Li CL, et al. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev Biol 1997;185:42–54.

    PubMed  CAS  Google Scholar 

  188. Yamaguchi TP, Harpal K, Henkmeyer M, et al. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994;8:3032–3044.

    PubMed  CAS  Google Scholar 

  189. Mima T, Ueno H, Fischman DA, et al. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA 1995;92:467–471.

    PubMed  CAS  Google Scholar 

  190. Letterio JJ, Geiser AG, Kulkarni AB, et al. Maternal rescue of transforming growth factor-beta 1 null mice. Science 1994;264:1936–1938.

    PubMed  CAS  Google Scholar 

  191. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature 1995;378:386–390.

    PubMed  CAS  Google Scholar 

  192. Liu X, Hwang H, Cao L, et al. Domain-specific gene disruption reveals critical regulation of neuregulin signaling by its cytoplasmic tail. Proc Natl Acad Sci USA 1998;95:13024–13029.

    PubMed  CAS  Google Scholar 

  193. Kramer R, Bucay N, Kane DJ, et al. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc Natl Acad Sci USA 1996;93:4833–4838.

    PubMed  CAS  Google Scholar 

  194. Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor ErbB2 in neural and cardiac development. Nature 1995;378:394–398.

    PubMed  CAS  Google Scholar 

  195. Gassmann M, Casagranda F, Orioli D, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 1995;378:390–394.

    PubMed  CAS  Google Scholar 

  196. Zhao JJ, Lemke G. Selective disruption of neuregulin-1 function in vertebrate embryos using ribozyme-tRNA transgenes. Development 1998;125:1899–1907.

    PubMed  CAS  Google Scholar 

  197. Yoshida K, Taga T, Saito M, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 1996;93:407–411.

    PubMed  CAS  Google Scholar 

  198. Hirota H, Yoshida K, Kishimoto T, et al. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92:4862–4866.

    PubMed  CAS  Google Scholar 

  199. Pennica D, King KL, Shaw KJ, et al. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci USA 1995;92:1142–1146.

    PubMed  CAS  Google Scholar 

  200. Sheng ZL, Pennica D, Wood WI, et al. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 1996;122:419–428.

    PubMed  CAS  Google Scholar 

  201. Sheng ZL, Knowlton K, Chen J, et al. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway-divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997;272:5783–5791.

    PubMed  CAS  Google Scholar 

  202. Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97:189–198.

    PubMed  CAS  Google Scholar 

  203. Sucov HM, Dyson E, Gumeringer CL, et al. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 1994;8:1007–1018.

    PubMed  CAS  Google Scholar 

  204. Kastner P, Grondona JM, Mark M, et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 1994;78:987–1003.

    PubMed  CAS  Google Scholar 

  205. Chen J, Kubalak SW, Chien KR. Ventricular muscle-restricted targeting of the RXR alpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 1998;125:1943–1949.

    PubMed  CAS  Google Scholar 

  206. Jaber M, Koch WJ, Rockman H, et al. Essential role of betaadrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 1996;93:12974–12979.

    PubMed  CAS  Google Scholar 

  207. Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993;74:679–691.

    PubMed  CAS  Google Scholar 

  208. Moens CB, Stanton BR, Parada LF, et al. Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 1993;119:485–499.

    PubMed  CAS  Google Scholar 

  209. Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998;93:361–372.

    PubMed  CAS  Google Scholar 

  210. Jacks T, Shih TS, Schmitt EM, et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994;7:353–361.

    PubMed  CAS  Google Scholar 

  211. Brannan CI, Perkins AS, Vogel KS, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994;8:1019–1029.

    PubMed  CAS  Google Scholar 

  212. Gitler AD, Zhu Y, Ismat FA, et al. Nf1 has an essential role in endothelial cells. Nat Genet 2003;33:75–79.

    PubMed  CAS  Google Scholar 

  213. Puri PL, Avantaggiati ML, Balsano C, et al. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J 1997;16:369–383.

    PubMed  CAS  Google Scholar 

  214. Puri PL, Sartorelli V, Yang XJ, et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1997;1:35–45.

    PubMed  CAS  Google Scholar 

  215. Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein-and p300-binding domains. J Biol Chem 1995;270:7791–7794.

    PubMed  CAS  Google Scholar 

  216. Sartorelli V, Huang J, Hamamori Y, et al. Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997;17:1010–1026.

    PubMed  CAS  Google Scholar 

  217. Shou WN, Aghdasi B, Armstrong DL, et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 1998;391:489–492.

    PubMed  CAS  Google Scholar 

  218. Wang T, Donahoe PK, Zervos AS. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 1994;265:674–676.

    PubMed  CAS  Google Scholar 

  219. Wehrens XH, Lehnart SE, Marks AR. Intracellular calcium release and cardiac disease. Annu Rev Physiol 2005;67:69–98.

    PubMed  CAS  Google Scholar 

  220. Charng MJ, Kinnunen P, Hawker J, et al. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor-beta receptors. J Biol Chem 1996;271:22941–22944.

    PubMed  CAS  Google Scholar 

  221. Chen H, Shi S, Acosta L, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 2004;131:2219–2231.

    PubMed  CAS  Google Scholar 

  222. Wakamiya M, Lindsay EA, Rivera-Perez JA, et al. Functional analysis of Gscl in the pathogenesis of the DiGeorge and velocardiofacial syndromes. Hum Mol Genet 1998;7:1835–1840.

    PubMed  CAS  Google Scholar 

  223. Saint-Jore B, Puech A, Heyer J, et al. Goosecoid-like (Gscl), a candidate gene for velocardiofacial syndrome, is not essential for normal mouse development. Hum Mol Genet 1998;7:1841–1849.

    PubMed  CAS  Google Scholar 

  224. Ramirez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature 1995;378:720–724.

    PubMed  CAS  Google Scholar 

  225. Farrell MJ, Stadt H, Wallis KT, et al. HIRA, a DiGeorge syndrome candidate gene, is required for cardiac outflow tract septation. Circ Res 1999;84:127–135.

    PubMed  CAS  Google Scholar 

  226. Kispert A, Koschorz B, Herrmann BG. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J 1995;14:4763–4772.

    PubMed  CAS  Google Scholar 

  227. Smith J. Brachyury and the T-box genes. Curr Opin Genet Dev 1997;7:474–480.

    PubMed  CAS  Google Scholar 

  228. Papaioannou VE, Silver LM. The T-box gene family. Bioessays 1998;20:9–19.

    PubMed  CAS  Google Scholar 

  229. Conlon FL, Sedgwick SG, Weston KM, et al. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 1996;122:2427–2435.

    PubMed  CAS  Google Scholar 

  230. Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA 1999;96:2919–2924.

    PubMed  CAS  Google Scholar 

  231. Casey B. Two rights make a wrong: human left-right malformations. Hum Mol Genet 1998;7:1565–1571.

    PubMed  CAS  Google Scholar 

  232. Gebbia M, Ferrero GB, Pilia G, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 1997;17:305–308.

    PubMed  CAS  Google Scholar 

  233. Belmont JW, Mohapatra B, Towbin JA, et al. Molecular genetics of heterotaxy syndromes. Curr Opin Cardiol 2004;19:216–220.

    PubMed  Google Scholar 

  234. Ware SM, Peng J, Zhu L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 2004;74:93–105.

    PubMed  CAS  Google Scholar 

  235. Nakata K, Nagai T, Aruga J, et al. Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci USA 1997;94:11980–11985.

    PubMed  CAS  Google Scholar 

  236. Nagai T, Aruga J, Takada S, et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 1997;182:299–313.

    PubMed  CAS  Google Scholar 

  237. Kosaki R, Gebbia M, Kosaki K, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 1999;82:70–76.

    PubMed  CAS  Google Scholar 

  238. Kosaki K, Bassi MT, Kosaki R, et al. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet 1999;64:712–721.

    PubMed  CAS  Google Scholar 

  239. Bamford RN, Roessler E, Burdine RD, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 2000;26:365–369.

    PubMed  CAS  Google Scholar 

  240. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998;281:108–111.

    PubMed  CAS  Google Scholar 

  241. Tanaka M, Chen Z, Bartunkova S, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999;126:1269–1280.

    PubMed  CAS  Google Scholar 

  242. Takahashi N, Calderone A, Izzo NJ Jr, et al. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest 1994;94:1470–1476.

    PubMed  CAS  Google Scholar 

  243. Donohue TJ, Dworkin LD, Ma JX, et al. Antihypertensive agents that limit ventricular hypertrophy inhibit cardiac expression of insulin-like growth factor-I. J Invest Med 1997;45:584–591.

    CAS  Google Scholar 

  244. Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    PubMed  CAS  Google Scholar 

  245. Yorikane R, Sakai S, Miyauchi T, et al. Increased production of endothelin-1 in the hypertrophied rat heart due to pressure overload. FEBS Lett 1993;332:31–34.

    PubMed  CAS  Google Scholar 

  246. Ishikawa M, Saito Y, Miyamoto Y, et al. cDNA cloning of rat cardiotrophin-1 (CT-1): augmented expression of CT-1 gene in ventricle of genetically hypertensive rats. Biochem Biophys Res Commun 1996;219:377–381.

    PubMed  CAS  Google Scholar 

  247. Shubeita HE, McDonough PM, Harris AN, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–20562.

    PubMed  CAS  Google Scholar 

  248. Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res 1995;77:1040–1052.

    PubMed  CAS  Google Scholar 

  249. Dorn GW, 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005;115:527–537.

    PubMed  CAS  Google Scholar 

  250. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: Chemical screens to modulate genes. J Clin Invest 2005;115:538–546.

    PubMed  CAS  Google Scholar 

  251. Parker TG, Schneider MD. Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Annu Rev Physiol 1991;53:179–200.

    PubMed  CAS  Google Scholar 

  252. Bishopric NH, Jayasena V, Webster KA. Positive regulation of the skeletal alpha-actin gene by Fos and Jun in cardiac myocytes. J Biol Chem 1992;267:25535–25540.

    PubMed  CAS  Google Scholar 

  253. Paradis P, Maclellan WR, Belaguli NS, et al. Serum response factor mediates AP-1-dependent induction of the skeletal alphaactin promoter in ventricular myocytes. J Biol Chem 1996;271:10827–10833.

    PubMed  CAS  Google Scholar 

  254. McDonough PM, Hanford DS, Sprenkle AB, et al. Collaborative roles for c-Jun N-terminal kinase, c-Jun, serum response factor, and Sp1 in calcium-regulated myocardial gene expression. J Biol Chem 1997;272:24046–24053.

    PubMed  CAS  Google Scholar 

  255. Kim SJ, Angel P, Lafyatis R, et al. Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol 1990;10:1492–1497.

    PubMed  CAS  Google Scholar 

  256. Omura T, Yoshiyama M, Yoshida K, et al. Dominant negative mutant of c-Jun inhibits cardiomyocyte hypertrophy induced by endothelin 1 and phenylephrine. Hypertension 2002;39:81–86.

    PubMed  CAS  Google Scholar 

  257. Jeong MY, Kinugawa K, Vinson C, et al. AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program. Circulation 2005;111:1645–1651.

    PubMed  CAS  Google Scholar 

  258. Ricci R, Eriksson U, Oudit GY, et al. Distinct functions of junD in cardiac hypertrophy and heart failure. Genes Dev 2005;19:208–213.

    PubMed  CAS  Google Scholar 

  259. Thompson JT, Rackley MS, O’Brien TX. Upregulation of the cardiac homeobox gene Nkx2-5 (CSX) in feline right ventricular pressure overload. Am J Physiol 1998;43:H1569–H1573.

    Google Scholar 

  260. Molkentin JD, Markham BE. Myocyte-specific enhancerbinding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 1993;268:19512–19520.

    PubMed  CAS  Google Scholar 

  261. Hasegawa K, Lee SJ, Jobe SM, et al. cis-acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 1997;96:3943–3953.

    PubMed  CAS  Google Scholar 

  262. Herzig TC, Jobe SM, Aoki H, et al. Angiotensin II type 1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci USA 1997;94:7543–7548.

    PubMed  CAS  Google Scholar 

  263. Karns LR, Kariya K, Simpson PC. M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J Biol Chem 1995;270:410–417.

    PubMed  CAS  Google Scholar 

  264. Thuerauf DJ, Arnold ND, Zechner D, et al. p38 mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J Biol Chem 1998;273:20636–20643.

    PubMed  CAS  Google Scholar 

  265. Zhang D, Gaussin V, Taffet GE, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 2000;6:556–563.

    PubMed  CAS  Google Scholar 

  266. Kodama H, Fukuda K, Pan J, et al. Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, activates the JAK/ STAT pathway in rat cardiomyocytes. Circ Res 1997;81:656–663.

    PubMed  CAS  Google Scholar 

  267. Kunisada K, Tone E, Fujio Y, et al. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 1998;98:346–352.

    PubMed  CAS  Google Scholar 

  268. Bhat GJ, Thekkumkara TJ, Thomas WG, et al. Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J Biol Chem 1994;269:31443–31449.

    PubMed  CAS  Google Scholar 

  269. Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci USA 1998;95:5590–5594.

    PubMed  CAS  Google Scholar 

  270. Pan J, Fukuda K, Kodama H, et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 1997;81:611–617.

    PubMed  CAS  Google Scholar 

  271. Yasukawa H, Hoshijima M, Gu Y, et al. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 2001;108:1459–1467.

    PubMed  CAS  Google Scholar 

  272. Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 1998;281:1690–1693.

    PubMed  CAS  Google Scholar 

  273. Mende U, Kagen A, Cohen A, et al. Transient cardiac expression of constitutively active G alpha q leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 1998;95:13893–13898.

    PubMed  CAS  Google Scholar 

  274. Luo Z, Shyu KG, Gualberto A, et al. Calcineurin inhibitors and cardiac hypertrophy. Nat Med 1998;4:1092–1093.

    PubMed  CAS  Google Scholar 

  275. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–76.

    PubMed  CAS  Google Scholar 

  276. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–1055.

    PubMed  CAS  Google Scholar 

  277. Schroder F, Handrock R, Beuckelmann DJ, et al. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 1998;98:969–976.

    PubMed  CAS  Google Scholar 

  278. del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999;100:2308–2311.

    Google Scholar 

  279. del Monte F, Harding SE, Dec GW, et al. Targeting phospholamban by gene transfer in human heart failure. Circulation 2002;105:904–907.

    PubMed  Google Scholar 

  280. Shannon TR, Bers DM. Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci 2004;1015:28–38.

    PubMed  CAS  Google Scholar 

  281. Yano M, Ikeda Y, Matsuzaki M. Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005;115:556–564.

    PubMed  CAS  Google Scholar 

  282. Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004;24:8374–8385.

    PubMed  CAS  Google Scholar 

  283. Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002;110:479–488.

    PubMed  CAS  Google Scholar 

  284. Chang S, McKinsey TA, Zhang CL, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004;24:8467–8476.

    PubMed  CAS  Google Scholar 

  285. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res 1998;83:15–26.

    CAS  Google Scholar 

  286. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.

    PubMed  CAS  Google Scholar 

  287. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100:12313–12318.

    PubMed  CAS  Google Scholar 

  288. Pagano M, Jackson PK. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 2004;118:535–538.

    PubMed  CAS  Google Scholar 

  289. MacLellan WR, Garcia A, Oh H, et al. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 2005;25:2486–2497.

    PubMed  CAS  Google Scholar 

  290. Gu W, Schneider JW, Condorelli G, et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993;72:309–324.

    PubMed  CAS  Google Scholar 

  291. Schneider JW, Gu W, Zhu L, et al. Reversal of terminal differentiation mediated by p107 in Rb(-/-) muscle cells. Science 1994;264:1467–1471.

    PubMed  CAS  Google Scholar 

  292. Kang MJ, Kim JS, Chae SW, et al. Cyclins and cyclin dependent kinases during cardiac development. Mol Cell 1997;7:360–366.

    CAS  Google Scholar 

  293. Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996;271:H2183–2189.

    PubMed  CAS  Google Scholar 

  294. Brooks G, Poolman RA, McGill CJ, et al. Expression and activities of cyclins and cyclin dependent kinases in developing rat ventricular myocytes. J Mol Cell Cardiol 1997;29:2261–2271.

    PubMed  CAS  Google Scholar 

  295. Soonpaa MH, Koh GY, Pajak L, et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 1997;99:2644–2654.

    PubMed  CAS  Google Scholar 

  296. Pasumarthi KB, Nakajima H, Nakajima HO, et al. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 2005;96:110–118.

    PubMed  CAS  Google Scholar 

  297. Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 2001;98:10308–10313.

    PubMed  CAS  Google Scholar 

  298. Liu Q, Dawes NJ, Lu Y, et al. alpha-Adrenergic stimulation induces phosphorylation of retinoblastoma protein in neonatal rat ventricular myocytes. Biochem J 1997;327:299–303.

    PubMed  CAS  Google Scholar 

  299. Sadoshima J, Aoki H, Izumo S. Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclindependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes. Circ Res 1997;80:228–241.

    PubMed  CAS  Google Scholar 

  300. Liu Y, Kitsis RN. Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J Cell Biol 1996;133:325–334.

    PubMed  CAS  Google Scholar 

  301. Bishopric NH, Zeng GQ, Sato B, et al. Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J Biol Chem 1997;272:20584–20594.

    PubMed  CAS  Google Scholar 

  302. Kirshenbaum LA, Abdellatif M, Chakraborty S, et al. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 1996;179:402–411.

    PubMed  CAS  Google Scholar 

  303. Akli S, Zhan S, Abdellatif M, et al. E1A can provoke G1 exit that is refractory to p21 and independent of activating Cdk2. Circ Res 1999;85:319–328.

    PubMed  CAS  Google Scholar 

  304. Agah R, Kirshenbaum LA, Truong LD, et al. Adenoviral delivery of E2F-1 directs cell cycle re-entry and p53-independent apoptosis in post-mitotic adult myocardium in vivo. J Clin Invest 1997;100:2722–2728.

    PubMed  CAS  Google Scholar 

  305. Jacks T, Fazeli A, Schmitt EM, et al. Effects of an Rb mutation in the mouse. Nature 1992;359:295–300.

    PubMed  CAS  Google Scholar 

  306. Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992;359:288–294.

    PubMed  CAS  Google Scholar 

  307. Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992;359:328–330.

    PubMed  CAS  Google Scholar 

  308. Rossant J, McMahon A. “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev 1999;13:142–145

    PubMed  CAS  Google Scholar 

  309. Rajewsky K, Gu H, Kuhn R, et al. Conditional gene targeting. J Clin Invest 1996;98:600–603.

    PubMed  CAS  Google Scholar 

  310. Gossen M, Bujard H. Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 2002;36:153–173.

    PubMed  CAS  Google Scholar 

  311. MacLellan WR, Garcia A, Oh H, et al. Overlapping roles of pocket proteins in the myocardium are unmasked by germline deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 2005;25:2486–2497.

    PubMed  CAS  Google Scholar 

  312. Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005;19:1175–1187.

    PubMed  CAS  Google Scholar 

  313. Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol 2005;243:287–335.

    PubMed  Google Scholar 

  314. Chadwick DJ, Goode J, eds. Development of the Cardiac Conduction System. Novartis Foundation Symposium No. 240. Chichester, UK: John Wiley & Sons, 2003.

    Google Scholar 

  315. Olivey HE, Compton LA, Barnett JV. Coronary vessel development: the epicardium delivers. Trends Cardiovasc Med 2004;14:247–251.

    PubMed  CAS  Google Scholar 

  316. Reese DE, Mikawa T, Bader DM. Development of the coronary vessel system. Circ Res 2002;91:761–768.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schneider, M.D., Olson, E.N. (2007). Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_52

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics