Skip to main content

Methods to Generate a Sequence-Defined Transposon Mutant Library in Staphylococcus epidermidis Strain 1457

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1106))

Abstract

Transposon mutant libraries are valuable resources to investigators studying bacterial species, including Staphylococcus epidermidis, which are difficult to genetically manipulate. Although sequence-defined transposon mutant libraries have been constructed in Staphylococcus aureus, no such library exists for S. epidermidis. Nevertheless, the study of Tn917-mediated mutations has been paramount in discovering unique aspects of S. epidermidis biology including initial adherence and accumulation during biofilm formation. Herein, we describe modifications to the methodology first described by Bae et al. to utilize the mariner-based transposon bursa aurealis to generate mutants in S. epidermidis strain 1457.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grueter L, Koenig O, Laufs R (1991) Transposon mutagenesis in Staphylococcus epidermidis using the Enterococcus faecalis transposon Tn917. FEMS Microbiol Lett 66:215–218

    Article  PubMed  CAS  Google Scholar 

  2. Heilmann C, Gerke C, Perdreau-Remington F et al (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    PubMed  CAS  Google Scholar 

  3. Mack D, Nedelmann M, Krokotsch A et al (1994) Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 62:3244–3253

    PubMed  CAS  Google Scholar 

  4. Knobloch JK, Nedelmann M, Kiel K et al (2003) Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 69:5812–5818

    Article  PubMed  CAS  Google Scholar 

  5. Bae T, Banger AK, Wallace A et al (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101:12312–12317

    Article  PubMed  CAS  Google Scholar 

  6. Bae T, Glass EM, Schneewind O et al (2008) Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol Biol 416:103–116

    Article  PubMed  CAS  Google Scholar 

  7. Bose JL, Fey PD, Bayles KW (2013) Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Appl Environ Microbiol 79:2218–2224

    Article  PubMed  CAS  Google Scholar 

  8. Fey PD, Endres JL, Yajjala VK et al (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4:e00537–00512

    Article  PubMed  CAS  Google Scholar 

  9. Li C, Sun F, Cho H et al (2010) CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J Bacteriol 192:3883–3892

    Article  PubMed  CAS  Google Scholar 

  10. Nuxoll A, Halouska S, Sadykov M et al (2012) CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. PLoS Pathog 11:e1003033

    Article  Google Scholar 

  11. Mack D, Siemssen N, Laufs R (1992) Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057

    PubMed  CAS  Google Scholar 

  12. Nedelmann M, Sabottke A, Laufs R et al (1998) Generalized transduction for genetic linkage analysis and transfer of transposon insertions in different Staphylococcus epidermidis strains. Zentralbl Bakteriol 287:85–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Widhelm, T.J., Yajjala, V.K., Endres, J.L., Fey, P.D., Bayles, K.W. (2014). Methods to Generate a Sequence-Defined Transposon Mutant Library in Staphylococcus epidermidis Strain 1457. In: Fey, P. (eds) Staphylococcus Epidermidis. Methods in Molecular Biology, vol 1106. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-736-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-736-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-735-8

  • Online ISBN: 978-1-62703-736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics