Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

Many methods have been proposed for RNA secondary structure comparison, and new ones are still being developed. In this chapter, we first consider structure representations and discuss their suitability for structure comparison. Then, we take a look at the more commonly used methods, restricting ourselves to structures without pseudo-knots. For comparing structures of the same sequence, we study base pair distances. For structures of different sequences (and of different length), we study variants of the tree edit model. We name some of the available tools and give pointers to the literature. We end with a short review on comparing structures with pseudo-knots as an unsolved problem and topic of active research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byun Y, Han K (2009) PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25(11):1435–1437

    Article  CAS  PubMed  Google Scholar 

  2. Hofacker IL, Fontana W, Stadler PF, Sebastian Bonhoeffer L, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125: 167–188

    Article  CAS  Google Scholar 

  3. Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25(15):1974–1975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fontana W, Konings DAM, Stadler PF, Schuster P (1993) Statistics of RNA secondary structures. Biopolymers 33(9): 1389–1404

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro BA, Zhang KZ (1990) Comparing multiple RNA secondary structures using tree comparisons. Comput Appl Biosci 6(4): 309–318

    CAS  PubMed  Google Scholar 

  6. Shapiro BA (1988) An algorithm for comparing multiple RNA secondary structures. Comput Appl Biosci 4(3):387–393

    CAS  PubMed  Google Scholar 

  7. Giegerich R, Voß B, Rehmsmeier M (2004) Abstract shapes of RNA. Nucleic Acids Res 32(16):4843–4851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Allali J, Sagot M-F (2005) A multiple graph layers model with application to RNA secondary structures comparison. In: String processing and information retrieval. Springer, New York, pp 348–359

    Google Scholar 

  9. Janssen S, Reeder J, Giegerich R (2008) Shape based indexing for faster search of RNA family databases. BMC Bioinformatics 9(1):131

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wilm A, Linnenbrink K, Steger G (2008) ConStruct: Improved construction of RNA consensus structures. BMC Bioinformatics 9(1):219

    Article  PubMed Central  PubMed  Google Scholar 

  11. Höner zu Siederdissen C, Hofacker IL (2010) Discriminatory power of RNA family models. Bioinformatics 26(18):i453–i459

    Google Scholar 

  12. Zuker M (1989) The use of dynamic programming algorithms in RNA secondary structure prediction. CRC Press, Boca Raton, RL, pp 159–184

    Google Scholar 

  13. Rosselló F, Valiente G (2006) An algebraic view of the relation between largest common subtrees and smallest common supertrees. Theor Comput Sci 362(1):33–53

    Article  Google Scholar 

  14. Tai K-C (1979) The tree-to-tree correction problem. J ACM 26(3):422–433

    Article  Google Scholar 

  15. Zhang K, Shasha D (1989) Simple fast algorithms for the editing distance between trees and related problems. SIAM J Comput 18(6):1245–1262

    Article  Google Scholar 

  16. Schirmer S, Giegerich R (2011) Forest alignment with affine gaps and anchors. In: Combinatorial pattern matching. Springer, New York, pp 104–117

    Google Scholar 

  17. Jiang T, Lin G, Ma B, Zhang K (2002) A general edit distance between RNA structures. J Comput Biol 9(2):371–388

    Article  CAS  PubMed  Google Scholar 

  18. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithm Mol Biol 6(1):26

    Google Scholar 

  19. Hoechsmann M, Töller T, Giegerich R, Kurtz S (2003) Local similarity in RNA secondary structures. Proc IEEE Comput Syst Bioinformatics Conference (CSB 2003) 2: 159–168

    Google Scholar 

  20. Hoechsmann M, Voß B, Giegerich R (2004) Pure multiple RNA secondary structure alignments: A progressive profile approach. IEEE/ACM Trans Comput Biol Bioinformatics 1:53–62

    Article  CAS  Google Scholar 

  21. Ritchie W, Legendre M, Gautheret D (2007) RNA stem loops: to be or not to be cleaved by RNAse III. RNA 13(4):457–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Blin G, Denise A, Dulucq S, Herrbach C, Touzet H (2010) Alignments of RNA structures. IEEE/ACM Trans Comput Biol Bioinformatics 7(2):309–322

    Article  CAS  Google Scholar 

  23. Allali J, Saule C, Chauve C, d’Aubenton Carafa Y, Denise A, Drevet C, Ferraro P, Gautheret D, Herrbach C, Leclerc F, de Monte A, Ouangraoua A, Sagot M-F, Termier M, Thermes C, Touzet H (2012a) Brasero: A resource for benchmarking RNA secondary structure comparison algorithms. Adv Bioinformatics 2012

    Google Scholar 

  24. Klein PN (1998) Computing the edit-distance between unrooted ordered trees. In: Proceedings of the 6th annual European Symposium on Algorithms (ESA). Springer, New York, pp 91–102

    Google Scholar 

  25. Touzet H (2005) A linear tree edit distance algorithm for similar ordered trees. In: CPM ’05: Proceedings of the 16th annual symposium on combinatorial pattern matching, pp 334–345

    Google Scholar 

  26. Dulucq S, Touzet H (2003) Analysis of tree edit distance algorithms. In: CPM ’03: Proceedings of the 14th annual symposium on combinatorial pattern matching, pp 83–95

    Google Scholar 

  27. Dulucq S, Touzet H (2005) Decomposition algorithms for the tree edit distance problem. J Discrete Algorithm 3(2–4):448–471

    Article  Google Scholar 

  28. Zhang K, Shasha D (1987) On the editing distance between trees and related problems. Ultra-computer Note 122, NYU C.S TR 310, August 1987

    Google Scholar 

  29. Touzet H (2003) Tree edit distance with gaps. Inform Process Lett 85(3):123–129

    Article  Google Scholar 

  30. Lozano A, Pinter RY, Rokhlenko O, Valiente G, Ziv-Ukelson M (2008) Seeded tree alignment. IEEE Trans Comput Biol Bioinformatics 503–513

    Google Scholar 

  31. Heyne S, Will S, Beckstette M, Backofen R (2009) Lightweight comparison of RNAs based on exact sequence-structure matches. Bioinformatics 25(16):2095–2102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Allali J, Chauve C, Ferraro P, Gaillard A-L (2012b) Efficient chaining of seeds in ordered trees. J Discrete Algorithm 14:107–118

    Article  Google Scholar 

  33. Jiang T, Wang L, Zhang K (1995) Alignment of trees – an alternative to tree edit. Theor Comput Sci 143(1):137–148

    Article  Google Scholar 

  34. Herrbach C, Denise A, Dulucq S (2010) Average complexity of the Jiang-Wang-Zhang pairwise tree alignment algorithm and of a RNA secondary structure alignment algorithm. Theor Comput Sci 411:2423–2432

    Article  Google Scholar 

  35. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  PubMed  Google Scholar 

  36. Allali J, Sagot M-F (2004) Novel tree edit operations for RNA secondary structure comparison. Algorithms Bioinformatics 412–425

    Google Scholar 

  37. Allali J, Sagot M-F (2008) A multiple layer model to compare RNA secondary structures. Software Pract Exp 38(8):775–792

    Article  Google Scholar 

  38. Blin G, Touzet H (2006) How to compare arc-annotated sequences: The alignment hierarchy. In: SPIRE, pp 291–303

    Google Scholar 

  39. Bon M, Orland H (2011) Tt2ne: a novel algorithm to predict RNA secondary structures with pseudoknots. Nucleic Acids Res 39(14):e93. DOI 10.1093/nar/gkr240. URL http://nar.oxfordjournals.org/content/39/14/e93.abstract

  40. Reidys CM, Huang FWD, Andersen JE, Penner R, Stadler PF, Nebel M (2011) Topology and prediction of RNA pseudoknots. Bioinformatics 27(8):1076–1085

    Article  CAS  PubMed  Google Scholar 

  41. Moehl M, Will S, Backofen R (2010) Lifting prediction to alignment of RNA pseudoknots. J Comput Biol 17(3):429–442

    Article  CAS  Google Scholar 

  42. Rastegari B, Condon A (2007) Parsing nucleic acid pseudoknotted secondary structure: Algorithm and applications. J Comput Biol 14: 16–32

    Article  CAS  PubMed  Google Scholar 

  43. Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285: 2053–2068

    Article  CAS  PubMed  Google Scholar 

  44. Möhl M, Will S, Backofen R (2008) Fixed parameter tractable alignment of rna structures including arbitrary pseudoknots. In: Proceedings of the 19th annual symposium on combinatorial pattern matching (CPM 2008)

    Google Scholar 

  45. Bauer M, Klau GW (2004) Structural Alignment of Two RNA Sequences with Lagrangian Relaxation. In: Fleischer R, Trippen G (eds) Proceedings of the 15th international symposium ISAAC 2004, vol 3341 of Lecture Notes in Computer Science, pp 113–123. Springer, New York

    Google Scholar 

  46. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  47. Abraham M, Wolfson HJ (2011) Inexact graph matching by “geodesic hashing” for the alignment of pseudoknoted RNA secondary structures. In: Holub J, Žďárek J (eds) Proceedings of the Prague stringology conference 2011, pp 45–57, Czech Technical University in Prague, Czech Republic. ISBN 978-80-01-04870-2

    Google Scholar 

Download references

Acknowledgment

Thanks go to Dr. Ralph Kandalla for a careful endodontic therapy of the first author, see also Fig. 15. Without his expertise, this chapter would not have been completed in time. Thanks also go to Sonja Klingberg for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schirmer, S., Ponty, Y., Giegerich, R. (2014). Introduction to RNA Secondary Structure Comparison. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics