Skip to main content
Book cover

Sirtuins pp 285–302Cite as

Circadian Measurements of Sirtuin Biology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1077))

Abstract

Many of our behavioral and physiological processes display daily oscillations that are under the control of the circadian clock. The core molecular clock network is present in both the brain and peripheral tissues and is composed of a complex series of interlocking transcriptional/translational feedback loops that oscillate with a periodicity of ~24 h. Recent evidence has implicated NAD+ biosynthesis and the sirtuin family of NAD+-dependent protein deacetylases as part of a novel feedback loop within the core clock network, findings which underscore the importance of taking circadian timing into consideration when designing and interpreting metabolic studies, particularly in regard to sirtuin biology. Thus, this chapter introduces both in vivo and in vitro circadian methods to analyze various sirtuin-related endpoints across the light–dark cycle and discusses the transcriptional, biochemical, and physiological outputs of the clock.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maron BJ, Kogan J, Proschan MA, Hecht GM, Roberts WC (1994) Circadian variability in the occurrence of sudden cardiac death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 23(6):1405–1409, pii: 0735-1097(94)90384-0

    Article  PubMed  CAS  Google Scholar 

  2. Di Lorenzo L, De Pergola G, Zocchetti C, L’Abbate N, Basso A, Pannacciulli N, Cignarelli M, Giorgino R, Soleo L (2003) Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int J Obes Relat Metab Disord 27(11):1353–1358. doi:10.1038/sj.ijo.0802419, pii: 0802419

    Article  PubMed  Google Scholar 

  3. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58(11):747–752

    Article  PubMed  CAS  Google Scholar 

  4. Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS (2003) Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health 76(6):424–430. doi:10.1007/s00420-003-0440-y

    Article  PubMed  Google Scholar 

  5. Jarrett RJ, Keen H (1969) Diurnal variation of oral glucose tolerance: a possible pointer to the evolution of diabetes mellitus. Br Med J 2(5653):341–344

    Article  PubMed  CAS  Google Scholar 

  6. la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50(6):1237–1243

    Article  PubMed  Google Scholar 

  7. Lee A, Ader M, Bray GA, Bergman RN (1992) Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes 41(6):742–749

    Article  Google Scholar 

  8. Roberts HJ (1964) Afternoon glucose tolerance testing: a key to the pathogenesis, early diagnosis and prognosis of diabetogenic hyperinsulinism. J Am Geriatr Soc 12:423–472

    PubMed  CAS  Google Scholar 

  9. Boden G, Ruiz J, Urbain JL, Chen X (1996) Evidence for a circadian rhythm of insulin secretion. Am J Physiol 271(2 pt 1):E246–E252

    PubMed  CAS  Google Scholar 

  10. Carroll KF, Nestel PJ (1973) Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 22(5):333–348

    PubMed  CAS  Google Scholar 

  11. Velasco A, Huerta I, Marin B (1988) Plasma corticosterone, motor activity and metabolic circadian patterns in streptozotocin-induced diabetic rats. Chronobiol Int 5(2):127–135

    Article  PubMed  CAS  Google Scholar 

  12. Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18(5):716–738

    Article  PubMed  Google Scholar 

  13. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi:10.1146/annurev.genom.5.061903.175925

    Article  PubMed  CAS  Google Scholar 

  14. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328. doi:10.1016/j.cell.2008.06.050, pii: S0092-8674(08)00837-4

    Article  PubMed  CAS  Google Scholar 

  15. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340. doi:10.1016/j.cell.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  16. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai SI, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651–654. doi:10.1126/science.1171641, pii: 1171641

    Article  PubMed  CAS  Google Scholar 

  17. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657. doi:10.1126/science.1170803, pii: 1170803

    Article  PubMed  CAS  Google Scholar 

  18. Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293(5529):510–514. doi:10.1126/science.1060698, pii: 1060698

    Article  PubMed  CAS  Google Scholar 

  19. Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P (2011) Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany NY) 3(8):794–802, pii: 100368

    Google Scholar 

  20. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14(4):528–536. doi:10.1016/j.cmet.2011.08.014

    Article  PubMed  CAS  Google Scholar 

  21. Schibler U (2009) The 2008 Pittendrigh/Aschoff lecture: peripheral phase coordination in the mammalian circadian timing system. J Biol Rhythms 24(1):3–15. doi:10.1177/0748730408329383

    Article  PubMed  CAS  Google Scholar 

  22. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320, pii: S0092867402007225

    Article  PubMed  CAS  Google Scholar 

  23. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16(11):1107–1115. doi:10.1016/j.cub.2006.04.026, pii: S0960-9822(06)01487-4

    Article  PubMed  CAS  Google Scholar 

  24. Pronina EA, Shvidenko IG, Shub GM, Shapoval OG (2011) [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii (6):61–64

    Google Scholar 

  25. Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4(2):e1000023. doi:10.1371/journal.pgen.1000023

    Article  PubMed  Google Scholar 

  26. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ III, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616. doi:10.1016/j.cell.2007.02.047

    Article  PubMed  CAS  Google Scholar 

  27. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  PubMed  CAS  Google Scholar 

  28. Siepka SM, Takahashi JS (2005) Methods to record circadian rhythm wheel running activity in mice. Methods Enzymol 393:230–239. doi:10.1016/S0076-6879(05)93008-5

    PubMed  CAS  Google Scholar 

  29. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937, pii: S0092-8674(00)81199-X

    Article  PubMed  CAS  Google Scholar 

  30. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347, pii: 8856

    Article  PubMed  CAS  Google Scholar 

  31. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385. doi:10.1126/science.1195262

    Article  PubMed  CAS  Google Scholar 

  32. Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26(6):567–580. doi:10.1101/gad.183251.111

    Article  PubMed  CAS  Google Scholar 

  33. Dauchy RT, Dauchy EM, Tirrell RP, Hill CR, Davidson LK, Greene MW, Tirrell PC, Wu J, Sauer LA, Blask DE (2010) Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp Med 60(5): 348–356

    PubMed  CAS  Google Scholar 

  34. Dauchy RT, Dupepe LM, Ooms TG, Dauchy EM, Hill CR, Mao L, Belancio VP, Slakey LM, Hill SM, Blask DE (2011) Eliminating animal facility light-at-night contamination and its effect on circadian regulation of rodent physiology, tumor growth, and metabolism: a challenge in the relocation of a cancer research laboratory. J Am Assoc Lab Anim Sci 50(3):326–336

    PubMed  CAS  Google Scholar 

  35. Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng CX (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12(3):224–236. doi:10.1016/j.cmet.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  36. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5(4):e1000442. doi:10.1371/journal.pgen.1000442

    Article  PubMed  Google Scholar 

  37. Janik D, Godfrey M, Mrosovsky N (1994) Phase angle changes of photically entrained circadian rhythms following a single nonphotic stimulus. Physiol Behav 55(1):103–107

    Article  PubMed  CAS  Google Scholar 

  38. Van Reeth O, Turek FW (1989) Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339(6219):49–51. doi:10.1038/339049a0

    Article  PubMed  CAS  Google Scholar 

  39. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, Jebailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):571–572. doi:10.1038/nature09253, pii: nature09253

    Article  Google Scholar 

  40. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705. doi:10.1016/j.cell.2004.11.015

    Article  PubMed  CAS  Google Scholar 

  41. Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 78(6):3363–3367

    Article  PubMed  CAS  Google Scholar 

  42. Eskin A, Takahashi JS (1983) Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science 220(4592):82–84

    Article  PubMed  CAS  Google Scholar 

  43. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465(1):79–82

    Article  PubMed  CAS  Google Scholar 

  44. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14(24):2289–2295. doi:10.1016/j.cub.2004.11.057, pii: S0960982204009157

    Article  PubMed  CAS  Google Scholar 

  45. Meng QJ, McMaster A, Beesley S, Lu WQ, Gibbs J, Parks D, Collins J, Farrow S, Donn R, Ray D, Loudon A (2008) Ligand modulation of REV-ERBalpha function resets the peripheral circadian clock in a phasic manner. J Cell Sci 121(Pt 21):3629–3635. doi:10.1242/jcs.035048, pii: 121/21/3629

    Article  PubMed  CAS  Google Scholar 

  46. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574–1583

    Article  PubMed  CAS  Google Scholar 

  47. Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramsey, K.M., Affinati, A.H., Peek, C.B., Marcheva, B., Hong, HK., Bass, J. (2013). Circadian Measurements of Sirtuin Biology. In: Hirschey, M. (eds) Sirtuins. Methods in Molecular Biology, vol 1077. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-637-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-637-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-636-8

  • Online ISBN: 978-1-62703-637-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics