Skip to main content

Integrating Fluorescent Biosensor Data Using Computational Models

  • Protocol
  • First Online:
Book cover Fluorescent Protein-Based Biosensors

Abstract

This book chapter provides a tutorial on how to construct computational models of signaling networks for the integration and interpretation of FRET-based biosensor data. A model of cAMP production and PKA activation is presented to provide an example of the model building process. The computational model is defined using hypothesized signaling network structure and measured kinetic parameters and then simulated in Virtual Cell software. Experimental acquisition and processing of FRET biosensor data is discussed in the context of model validation. This data is then used to fit parameters of the computational model such that the model can more accurately predict experimental data. Finally, this model is used to show how computational experiments can interrogate signaling networks and provide testable hypotheses. This simple, yet detailed, tutorial on how to use computational models provides biologists that use biosensors a powerful tool to further probe and evaluate the underpinnings of a biological response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aye-Han N-N, Ni Q, Zhang J (2009) Fluorescent biosensors for real-time tracking of post-translational modification dynamics. Curr Opin Chem Biol 13:392–397

    Article  PubMed  CAS  Google Scholar 

  2. Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 278:47997–48003

    Article  PubMed  CAS  Google Scholar 

  3. Sample V, Dipilato LM, Yang JH, Ni Q, Saucerman JJ, Zhang J (2012) Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat Chem Biol 8:375–382

    Article  PubMed  CAS  Google Scholar 

  4. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92

    Article  PubMed  Google Scholar 

  5. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506

    Article  PubMed  CAS  Google Scholar 

  6. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML model repository. Bioinformatics 24:2122–2123

    Article  PubMed  CAS  Google Scholar 

  7. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101: 16513–16518

    Article  PubMed  CAS  Google Scholar 

  8. Allen MD, Zhang J (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348:716–721

    Article  PubMed  CAS  Google Scholar 

  9. Zhang J, Ma Y, Taylor SS, Tsien RY (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98:14997–15002

    Article  PubMed  CAS  Google Scholar 

  10. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  PubMed  CAS  Google Scholar 

  11. Soltis AR, Saucerman JJ (2011) Robustness portraits of diverse biological networks conserved despite order-of-magnitude parameter uncertainty. Bioinformatics 27:2888–2894

    Article  PubMed  CAS  Google Scholar 

  12. Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM (2008) Virtual cell modelling and simulation software environment. IET Syst Biol 2:352–362

    Article  PubMed  CAS  Google Scholar 

  13. Rizzo MA, Springer G, Segawa K, Zipfel WR, Piston DW (2006) Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc Microanal 12:238–254

    Article  PubMed  CAS  Google Scholar 

  14. Gallegos LL, Kunkel MT, Newton AC (2006) Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J Biol Chem 281:30947–30956

    Article  PubMed  CAS  Google Scholar 

  15. Periasamy A, Wallrabe H, Chen Y, Barroso M (2008) Chapter 22: Quantitation of protein–protein interactions: confocal FRET microscopy. Methods Cell Biol 89:569–598

    Article  PubMed  CAS  Google Scholar 

  16. Zal T, Gascoigne NRJ (2004) Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86:3923–3939

    Article  PubMed  CAS  Google Scholar 

  17. Saucerman JJ, Zhang J, Martin JC, Peng LX, Stenbit AE, Tsien RY, McCulloch AD (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103:12923–12928

    Article  PubMed  CAS  Google Scholar 

  18. Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283: 2949–2961

    Article  PubMed  CAS  Google Scholar 

  19. Tay LH, Griesbeck O, Yue DT (2007) Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor. Biophys J 93:4031–4040

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greenwald, E.C., Polanowska-Grabowska, R.K., Saucerman, J.J. (2014). Integrating Fluorescent Biosensor Data Using Computational Models. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics