Skip to main content

Synthesis, Characterization, and Evaluation of Radiometal-Containing Peptide Nucleic Acids

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

Peptide nucleic acids (PNAs) have very attractive properties for applications in nuclear medicine. Because PNAs have high selectivity for DNA/RNA recognition, resistance to nuclease/protease degradation, and high thermal and radiolytic stabilities, PNA bioconjugates could transform the areas of diagnostic and therapeutic nuclear medicine. In this book chapter, we report on the current developments towards the preparation of radiometal-containing PNA constructs and summarize the protocols for labeling these probes with 99mTc, 111In, 64Cu, 90Y, and 177Lu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

Ac-GdAGG:

TetrapeptideN-acetyl-glycine-d-alanine-glycine-glycine

BFCA:

Bifunctional chelating agent

Bhoc:

Benzhydryloxycarbonyl

Bipy:

2,2′-bipyridine

Boc:

Di-tert-butyl dicarbonate

C:

Cytosine

Cbz:

Benzyloxycarbonyl

DIPEA:

Diisopropylethylamine

DMF:

Dimethylformamide

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

Dpa-N3:

2-azido-N,N-bis((pyridin-2-yl)methyl)ethanamine

DPA:

N,N-bis(2-picolyl)amine

DPAm:

N,N-bis(2-picolyl)amide

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

Fmoc:

9-fluorenylmethyloxycarbonyl

G:

Guanine

GdAGG:

Tetrapeptide glycine-d-alanine-glycine-glycine

HATU:

2-(1H-7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-phosphate

HCl:

Hydrochloric acid

HEPES:

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

HPLC:

High-performance liquid chromatography

ITLC:

Instant thin-layer chromatography

MAG3 :

S-acetylmercaptoacetyltriglycine

MAS3 :

S-acetylmercaptoacetyltriserine

PET:

Positron emission tomography

PBS:

Phosphate-buffered saline

PNA:

Peptide nucleic acid

PzDA:

N-(1-pyrazolyl)ethyl-ethane-1,2-diamine

SBTG2DAP:

N,N′-bis(S-benzoyl-thioglycoloyl)diaminopropanoate

SEC:

Size-exclusion chromatography

SPECT:

Single-photon emission computed tomography

T:

Thymine

TETA:

1,4,8,11-tetraazacyclotetradecane1,4,8,11-tetraacetic acid

TFA:

Trifluoroacetic acid

TIS:

Triisopropylsilane

References

  1. Zwanziger D, Beck-Sickinger AG (2008) Radiometal targeted tumor diagnosis and therapy with peptide hormones. Curr Pharm Des 14:2385–2400

    Article  PubMed  CAS  Google Scholar 

  2. Tweedle MF (2009) Peptide-targeted diagnostics and radiotherapeutics. Acc Chem Res 42:958–968

    Article  PubMed  CAS  Google Scholar 

  3. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Delivery Rev 60:1347–1370

    Article  CAS  Google Scholar 

  4. Wickstrom E, Tian X, Amirkhanov NV, Chakrabarti A, Aruva MR, Rao PS, Qin W, Zhu W, Sauter ER, Thakur ML (2005) Radionuclide-peptide nucleic acid in diagnosis and treatment of pancreatic cancer. In: Phillips MI (ed) Antisense therapeutics, vol 106, 2nd edn. Humana Press, Totowa, pp 135–191

    Google Scholar 

  5. Mukherjee A, Wickstrom E, Thakur ML (2009) Imaging oncogene expression. Eur J Radiol 70:265–273

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mardirossian G, Lei K, Rusckowski M, Chang F, Qu T, Egholm M, Hnatowich DJ (1997) In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA). J Nucl Med 38:907–913

    PubMed  CAS  Google Scholar 

  7. Rusckowski M, Qu T, Chang F, Hnatowich DJ (1997) Pretargeting using peptide nucleic acid. Cancer 80:2699–2705

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Chang F, Zhang Y, Liu N, Liu G, Gupta S, Rusckowski M, Hnatowich DJ (2001) Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjugate Chem 12:807–816

    Article  CAS  Google Scholar 

  9. Gasser G, Sosniak AM, Metzler-Nolte N (2011) Metal-containing peptide nucleic acid conjugates. Dalton Trans 40:7061–7076

    Article  PubMed  CAS  Google Scholar 

  10. Wickstrom E, Sauter ER, Tian X, Rao S, Quin W, Thakur ML (2002) Radiolabeled PNAs for imaging gene expression. Braz Arch Biol Technol 45:57–59

    Article  CAS  Google Scholar 

  11. Lewis MR, Jia F (2003) Antisense imaging: and miles to go before we sleep? J Cell Biochem 90:464–472

    Article  PubMed  CAS  Google Scholar 

  12. Tian X, Chakrabarti A, Amirkhanov NV, Aruva MR, Zhang K, Mathew B, Cardi C, Qin W, Sauter ER, Thakur ML, Wickstrom E (2005) External imaging of CCND1, MYC, and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA-peptide chimeras. Ann N Y Acad Sci 1059:106–144

    Article  PubMed  CAS  Google Scholar 

  13. Wickstrom E, Thakur ML, Sauter ER (2006) Radiolabeled peptide nucleic acid oncogene probes conjugated to receptor-specific peptide analogs. In: Janson CG, During MJ (eds) Peptide nucleic acids, morpholinos, and related antisense biomolecules, molecular biology intelligence unit. Landes Bioscience/Kluwer Academic/Plenum Publishers, New York, pp 59–86

    Google Scholar 

  14. Wickstrom E, Thakur ML (2006) Imaging cancer gene activity in patients from outside the body. Biotechnol Healthcare 2:45–48

    Google Scholar 

  15. Tian X, Chakrabarti A, Amirkhanov NV, Aruva MR, Zhang K, Cardi CA, Lai S, Thakur ML, Wickstrom E (2007) Receptor-mediated internalization of chelator–PNA–peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours. Biochem Soc Trans 35:72–76

    Article  PubMed  Google Scholar 

  16. Iyer AK, He J (2011) Radiolabeled oligonucleotides for antisense imaging. Curr Org Synth 8:604–614

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Tian X, Aruva MR, Rao PS, Qin W, Read P, Sauter ER, Thakur ML, Wickstrom E (2003) Imaging oncogene expression. Ann N Y Acad Sci 1002:165–188

    Article  PubMed  CAS  Google Scholar 

  18. Tian X, Aruva MR, Qin W, Zhu W, Duffy KT, Sauter ER, Thakur ML, Wickstrom E (2004) External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide-peptide nucleic acid-peptide chimeras. J Nucl Med 45:2070–2082

    PubMed  CAS  Google Scholar 

  19. Tian X, Aruva MR, Wolfe HR, Qin W, Sauter ER, Thakur ML, Waldman SA, Wickstrom E (2005) Tumor-targeting peptide-PNA-peptide chimeras for imaging overexpressed oncogene mRNAs. Nucleos Nucleot Nucl 24:1085–1091

    Article  CAS  Google Scholar 

  20. Rao PS, Tian X, Qin W, Aruva MR, Thakur ML, Wickstrom E (2003) 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumours. Nucl Med Commun 24:857–863

    PubMed  CAS  Google Scholar 

  21. Tian X, Mohan R, Qin W, Zhu W, Sauter ER, Thakur ML, Wickstrom E (2005) Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [(99m)Tc]peptide-peptide nucleic acid-peptide chimera. Bioconjugate Chem 16: 70–76

    Article  CAS  Google Scholar 

  22. Chang F, Qu T, Rusckowski M, Hnatowich DJ (1999) NHS-MAS3: a bifunctional chelator alternative to NHS-MAG3. Appl Radiat Isot 50:723–732

    Article  PubMed  CAS  Google Scholar 

  23. Thakur ML, Tian X, Amirkhanov NV, Chakrabarti A, Aruva MR, Rao PS, Qin W, Zhu W, Sauter ER, Wickstrom E (2004) The role of radiolabeled peptide-nucleic acid chimeras and peptides in imaging oncogene expression. Ind J Nucl Med 19:98–114

    Google Scholar 

  24. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP (2001) Synthesis and properties of boranocarbonate: A convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136

    Article  PubMed  CAS  Google Scholar 

  25. Xavier C, Giannini C, Gano L, Maiorana S, Alberto R, Santos I (2008) Synthesis, characterization, and evaluation of a novel 99mTc(CO)3 pyrazolyl conjugate of a peptide nucleic acid sequence. J Biol Inorg Chem 13:1335–1344

    Article  PubMed  CAS  Google Scholar 

  26. Gasser G, Jäger K, Zenker M, Bergmann R, Steinbach J, Stephan H, Metzler-Nolte N (2010) Preparation, 99mTc-labeling and biodistribution studies of a PNA oligomer containing a New ligand derivative of 2,2′-dipicolylamine. J Inorg Biochem 104:1133–1140

    Article  PubMed  CAS  Google Scholar 

  27. Gasser G, Sosniak AM, Leonidova A, Braband H, Metzler-Nolte N (2011) Towards the preparation of novel Re/99mTc tricarbonyl-containing peptide nucleic acid bioconjugates. Aust J Chem 64:265–272

    Article  CAS  Google Scholar 

  28. Suzuki T, Wu D, Schlachetzki F, Di JY, Boado RJ, Partridge WM (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45:1766–1775

    PubMed  CAS  Google Scholar 

  29. Suzuki T, Zhang Y, Zhang YF, Schlachetzki F, Partridge WM (2004) Imaging gene expression in regional brain ischemia in vivo with a targeted [111In]-antisense radiopharmaceutical. Mol Imaging 3:356–363

    Article  PubMed  CAS  Google Scholar 

  30. He Y, Panyutin IG, Karavanov A, Demidov VV, Neumann RD (2004) Sequence-specific DNA strand cleavage by 111In-labeled peptide nucleic acids. Eur J Nucl Med Mol Imaging 31:837–845

    Article  PubMed  CAS  Google Scholar 

  31. Gallazzi F, Wang Y, Jia F, Shenoy N, Landon LA, Hannink M, Lever SZ, Lewis MR (2003) Synthesis of radiometal-labeled and fluorescent cell-permeating peptide-PNA conjugates for targeting the bcl-2 proto-oncogene. Bioconjugate Chem 14:1083–1095

    Article  CAS  Google Scholar 

  32. Jia F, Figueroa SD, Gallazzi F, Balaji BS, Hannink M, Lever SZ, Hoffman TJ, Lewis MR (2008) Molecular imaging of bcl-2 expression in small lymphocytic lymphoma using 111In-labeled PNA-peptide conjugates. J Nucl Med 49:430–438

    Article  PubMed  CAS  Google Scholar 

  33. Liu G, Zhang S, He H-F, Liu N, Gupta S, Rusckowski M, Hnatowich DJ (2002) The influence of chain length and base sequence on the pharmacokinetic behavior of 99mTc-morpholinos in mice. Q J Nucl Med 46:233–243

    PubMed  CAS  Google Scholar 

  34. Liu G, He J, Dou S, Gupta S, van der Heyden J-L, Rucksowski M, Hnatowich DJ (2003) Pretargeting in tumored mice with radiolabeled morpholino oligomer showing low kidney uptake. Eur J Nucl Med Mol Imaging 31:417–424

    Article  PubMed  CAS  Google Scholar 

  35. Mier W, Eritja R, Mohammed A, Haberkorn U, Eisenhut M (2003) Peptide-PNA Conjugates. Targeted transport of Antisense Therapeutics into Tumours. Angew Chem Int Ed 42:1968–1971

    Article  CAS  Google Scholar 

  36. Mishra R, Su W, Pohmann R, Pfeuffer J, Sauer MG, Urgurbil K, Engelmann J (2009) Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding. Bioconjugate Chem 20:1860–1868

    Article  CAS  Google Scholar 

  37. Albertshofer K, Siwkowski AM, Wancewicz EV, Esau CC, Watanabe T, Nishihara KC, Kinberger GA, Malik L, Eldrup AB, Manoharan M, Geary RS, Monia BP, Swayze EE, Griffey RH, Bennett CF, Maier MA (2005) Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid. J Med Chem 48:6741–6749

    Article  PubMed  CAS  Google Scholar 

  38. Chakrabarti A, Aruva MR, Sajankila SP, Thakur ML, Wickstrom E (2005) Synthesis of novel peptide nucleic acid-peptide chimera for non-invasive imaging of cancer. Nucleosides Nucleotides Nucleic Acids 24:409–414

    Article  PubMed  CAS  Google Scholar 

  39. Calderon Sanchez O, Mohammed A, Mier W, Graham K, Schuhmacher S, Arndt OS, Haberkorn U, Mocelo R, Eisenhut M (2003) 2,3,5,6-Tetraflourophenyl N-(S-benzothioacetyl)glycylglycyl-p-aminobenzoate, a heterobifunctional 99mTc ligand for precomplexed antibody labelling. Bioconjugate Chem 14:1209–1213

    Article  CAS  Google Scholar 

  40. Sun X, Fang H, Li X, Rossin R, Welch MJ, Taylor J-S (2005) MicroPET imaging of MCF-7 tumors in mice via unr mRNA-targeted peptide nucleic acids. Bioconjugate Chem 16:294–305

    Article  CAS  Google Scholar 

  41. Tian X, Aruva MR, Zhang K, Shanthly N, Cardi CA, Thakur ML, Wickstrom E (2007) PET imaging of CCND1 mRNA in human MCF7 estrogen receptor-positive breast cancer xenografts with oncogene-specific [64Cu]chelator-peptide nucleic acid-IGF1 analog radiohybridization probes. J Med Chem 48:1699–1707

    CAS  Google Scholar 

  42. Chakrabarti A, Zhang K, Aruva MR, Cardi CA, Opitz AW, Wagner NJ, Thakur ML, Wickstrom E (2007) Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [64Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biol Ther 6:948–956

    Article  PubMed  CAS  Google Scholar 

  43. Lewis MR, Jia F, Gallazzi F, Wang Y, Zhang J, Shenoy N, Lever SZ, Hannink M (2002) Radiometal-labeled peptide-PNA conjugates for targeting bcl-2 expression: preparation, characterization, and in vitro mRNA binding. Bioconjugate Chem 13:1176–1180

    Article  CAS  Google Scholar 

  44. Balkin ER, Jia F, Miller WH, Lewis MR (2011) In vitro evaluation of targeted antisense 177Lu radiotherapy. Anticancer Res 31:3143–3150

    PubMed  CAS  Google Scholar 

  45. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA-Octreotide to superoxide dismutase in rat liver. Bioconjugate Chem 11:527–532

    Article  CAS  Google Scholar 

  46. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, Anderson CJ (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47:1465–1474

    Article  PubMed  CAS  Google Scholar 

  47. Franzini RM, Watson RM, Patra GK, Breece RM, Tierney DL, Hendrich MP, Achim C (2006) Metal binding to bipyridine-modified PNA. Inorg Chem 45:9798–9811

    Article  PubMed  CAS  Google Scholar 

  48. Whitney A, Gavory G, Balasubramanian S (2003) Site-specific cleavage of human telomerase RNA using PNA-neocuproine·Zn(II) derivatives. Chem Commun 36–37

    Google Scholar 

  49. Popescu D-L, Parolin TJ, Achim C (2003) Metal incorporation in modified PNA duplexes. J Am Chem Soc 125:6354–6355

    Article  PubMed  CAS  Google Scholar 

  50. Franzini RM, Watson RM, Popescu D-L, Patra GK, Achim C (2004) Metal-containing modified peptide nucleic acids. Polym Prepr 45:337–338

    Article  CAS  Google Scholar 

  51. Watson RM, Skorik YA, Patra GK, Achim C (2005) Influence of metal coordination on the mismatch tolerance of ligand-modified PNA duplexes. J Am Chem Soc 127:14628–14639

    Article  PubMed  CAS  Google Scholar 

  52. Murtola M, Strömberg R (2008) PNA based artificial nucleases displaying catalysis with turnover in the cleavage of a leukemia related RNA model. Org Biomol Chem 20:3837–3842

    Article  CAS  Google Scholar 

  53. Füssl A, Schleifenbaum A, Göritz M, Riddell A, Schultz C, Kraemer R (2006) Cellular uptake of PNA-terpyridine conjugates and its enhancement by Zn2+ ions. J Am Chem Soc 128:5986–5987

    Article  PubMed  CAS  Google Scholar 

  54. Mokhir A, Zohm B, Füssl A, Kraemer R (2003) Synthesis and DNA binding properties of terminally modified peptide nucleic acids. Bioorg Med Chem Lett 13:2489–2492

    Article  PubMed  CAS  Google Scholar 

  55. Kirin SI, Ott I, Gust R, Mier W, Weyhermueller T, Metzler-Nolte N (2008) Cellular uptake quantification of metalated peptide and peptide nucleic acid bioconjugates by atomic absorption spectroscopy. Angew Chem Int Ed 47:955–959

    Article  CAS  Google Scholar 

  56. Zelder FH, Mokhir A, Kraemer R (2003) Sequence selective hydrolysis of linear DNA using conjugates of Zr(IV) complexes and peptide nucleic acids. Inorg Chem 42:8618–8620

    Article  PubMed  CAS  Google Scholar 

  57. Kraemer R, Mokhir A (2012) Metal complex derivatives of peptide nucleic acids (PNA). Met Ions Life Sci 10:319–340

    Article  Google Scholar 

  58. Joshi T, Barbante GJ, Francis PS, Hogan CF, Bond AM, Spiccia L (2011) Electrochemiluminescent PNA like monomers containing Ru(II)-dipyridoquinoxaline and Ru(II)-dipyridophenazine complexes. Inorg Chem 50:12172–12183

    Article  PubMed  CAS  Google Scholar 

  59. Joshi T, Barbante GJ, Francis PS, Hogan CF, Bond AM, Gasser G, Spiccia L (2012) Electrochemiluminescent monomers for solid support syntheses of Ru(II) PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability. Inorg Chem 51:3302–3315

    Article  PubMed  CAS  Google Scholar 

  60. Gasser G, Hüsken N, Köster SD, Metzler-Nolte N (2008) Synthesis of organometallic PNA oligomers by click chemistry. Chem Commun 3675–3677

    Google Scholar 

  61. Hüsken N, Gasser G, Köster SD, Metzler-Nolte N (2009) Four-potential. Ferrocene labelling of PNA oligomers via click chemistry. Bioconjugate Chem 20:1578–1586

    Article  CAS  Google Scholar 

  62. Sosniak A, Gasser G, Metzler-Nolte N (2009) Thermal melting studies of modified PNA oligomers. Org Biomol Chem 7:4992–5000

    Article  PubMed  CAS  Google Scholar 

  63. Winnard P, Chang F, Rusckowski M, Mardirossian G, Hnatowich DJ (1997) Preparation and use of NHS-MAG3 for technetium-99m labeling of DNA. Nucl Med Biol 24:425–432

    Article  PubMed  CAS  Google Scholar 

  64. Riesen A, Zehnder M, Kaden TA (1986) Metal complexes of macrocyclic ligands. Helv Chim Acta 69:2067–2073

    Article  CAS  Google Scholar 

  65. Lewis MR, Jia F, Gallazzi F, Wang Y, Zhang J, Shenoy N, Lever SZ, Hannink M (2002) Comparison of Yttrium and Indium complexes of DOTA-BA and DOTA-MBA: models for 90Y- and 111In-labeled DOTA-biomolecule conjugates. Bioconjugate Chem 13:902–913

    Article  CAS  Google Scholar 

  66. Aimea S, Bargea A, Bottaa M, Fasanoa M, Ayalab JD, Bombieribq G (1996) Crystal structure and solution dynamics of the lutetium(III) chelate of DOTA. Inorg Chim Acta 246:423–429

    Article  Google Scholar 

  67. Hsieh W-Y, Liu S (2004) Synthesis, characterization, and structures of Indium in(DTPA-BA2) and Yttrium Y(DTPA-BA2)(CH3OH) complexes (BA = benzylamine): models for 111In- and 90Y-labeled DTPA-biomolecule conjugates. Inorg Chem 43:6006–6014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Institute of Radiopharmautical Cancer Research at the Helmholtz-Zentrum Dresden-Rossendorf, the Swiss National Science Foundation (Professorship N° PP00P2_133568 and Research Grant N° 200021_129910 to G.G.), and the University of Zurich are gratefully acknowledged for their generous financial support. The authors thank Prof. Nils Metzler-Nolte, Prof. Jörg Steinbach, Dr. Hans-Jürgen Pietzsch, Dr. Ralf Bergmann, and Dr. Tanmaya Joshi for helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Stephan, H., Foerster, C., Gasser, G. (2014). Synthesis, Characterization, and Evaluation of Radiometal-Containing Peptide Nucleic Acids. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics