Skip to main content

Cellular Cardiomyoplasty: Its Past, Present, and Future

  • Protocol
  • First Online:
Cellular Cardiomyoplasty

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1036))

Abstract

Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Article  PubMed  Google Scholar 

  2. Ang KL, Shenje LT, Reuter S et al (2010) Limitations of conventional approaches to identify myocyte nuclei in histologic sections of the heart. Am J Physiol Cell Physiol 298:C1603–C1609

    Article  PubMed  CAS  Google Scholar 

  3. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272:H220–H226

    PubMed  CAS  Google Scholar 

  4. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  5. Kao RL, Browder W, Li C (2009) Cellular cardiomyoplasty: what have we learned? Asian Cardiovasc Thorac Ann 17:89–101

    Article  PubMed  Google Scholar 

  6. Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3:701–712

    Article  PubMed  CAS  Google Scholar 

  7. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    Article  PubMed  CAS  Google Scholar 

  8. Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–640

    Article  PubMed  CAS  Google Scholar 

  9. Müller P, Pfeiffer P, Koglin J et al (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106:31–35

    Article  PubMed  Google Scholar 

  10. Warejcka DJ, Harvey R, Taylor BJ et al (1996) A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 62:233–242

    Article  PubMed  CAS  Google Scholar 

  11. Hierlihy AM, Seale P, Lobe CG et al (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243

    Article  PubMed  CAS  Google Scholar 

  12. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  13. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  PubMed  CAS  Google Scholar 

  14. Oyama T, Nagai T, Wada H et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341

    Article  PubMed  CAS  Google Scholar 

  15. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    Article  PubMed  CAS  Google Scholar 

  16. Tang YL, Shen L, Qian K, Phillips MI (2007) A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun 359:877–883

    Article  PubMed  CAS  Google Scholar 

  17. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  18. Andersen DC, Andersen P, Schneider M et al (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27:1571–1581

    Article  PubMed  Google Scholar 

  19. Shiba Y, Fernandes S, Zhu WZ et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325

    Article  PubMed  CAS  Google Scholar 

  20. Kao RL, Rizzo C, Magovern GJ (1989) Satellite cells for myocardial regeneration. Physiologist 32:220

    Google Scholar 

  21. Kao RL, Chiu RCJ (1997) Satellite cell implantation. In: Kao RL, Chiu RCJ (eds) Cellular cardiomyoplasty: myocardial repair with cell implantation. Chapman & Hall, New York, pp 129–162

    Google Scholar 

  22. Menasché P, Hagège AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  PubMed  Google Scholar 

  23. Mauro A (1978) Muscle regeneration. Raven, New York

    Google Scholar 

  24. Pallafacchina G, Blaauw B, Schiaffino S (2012) Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis [Epub ahead of print]

  25. Mauro A (1961) Satellite cells of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  26. Usas A, Mačiulaitis J, Mačiulaitis R et al (2011) Skeletal muscle-derived stem cells: implications for cell-mediated therapies. Medicina (Kaunas) 47:469–479

    Google Scholar 

  27. Aziz A, Sebastian S, Dilworth FJ (2012) The origin and fate of muscle satellite cells. Stem Cell Rev 8:609–622

    Article  PubMed  CAS  Google Scholar 

  28. Menasché P (2011) Stem cell therapy for chronic heart failure: lessons from a 15-year experience. C R Biol 334:489–496

    Article  PubMed  Google Scholar 

  29. Menasche P (2011) Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol 50:258–265

    Article  PubMed  CAS  Google Scholar 

  30. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  PubMed  CAS  Google Scholar 

  31. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  32. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  PubMed  CAS  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  34. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–II256

    PubMed  CAS  Google Scholar 

  35. Wang JS, Shum-Tim D, Galipeau J et al (2000) Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120:999–1005

    Article  PubMed  CAS  Google Scholar 

  36. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  37. Wu KH, Mo XM, Han ZC, Zhou B (2011) Stem cell engraftment and survival in the ischemic heart. Ann Thorac Surg 92:1917–1925

    Article  PubMed  Google Scholar 

  38. Hoover-Plow J, Gong Y (2012) Challenges for heart disease stem cell therapy. Vasc Health Risk Manag 8:99–113

    Article  PubMed  Google Scholar 

  39. Wen Y, Meng L, Xie J, Ouyang J (2011) Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opin Biol Ther 11:559–567

    Article  PubMed  Google Scholar 

  40. Wen Y, Meng L, Ding Y, Ouyang J (2011) Autologous transplantation of blood-derived stem/progenitor cells for ischaemic heart disease. Int J Clin Pract 65:858–865

    Article  PubMed  CAS  Google Scholar 

  41. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  42. Halvorsen YD, Franklin D, Bond AL et al (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741

    Article  PubMed  CAS  Google Scholar 

  43. Zhu Y, Liu T, Song K et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  PubMed  CAS  Google Scholar 

  44. van Dijk A, Naaijkens BA, Jurgens WJ et al (2011) Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application. Stem Cell Res 7:219–229

    Article  PubMed  Google Scholar 

  45. Sun CK, Yen CH, Lin YC et al (2011) Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J Transl Med 9(118):1–13

    Google Scholar 

  46. Cawthorn WP, Scheller EL, MacDougald OA (2012) Adipose tissue stem cells: the great WAT hope. Trends Endocrinol Metab 23:270–277

    Article  PubMed  CAS  Google Scholar 

  47. Planat-Bénard V, Menard C, André M et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  Google Scholar 

  48. Rangappa S, Fen C, Lee EH et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  49. Chang W, Lim S, Song BW et al (2012) Phorbol myristate acetate differentiates human adipose-derived mesenchymal stem cells into functional cardiogenic cells. Biochem Biophys Res Commun 424:740–746

    Article  PubMed  CAS  Google Scholar 

  50. Madonna R, Geng YJ, De Caterina R (2009) Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol 29:1723–1729

    Article  PubMed  CAS  Google Scholar 

  51. Bai X, Alt E (2010) Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem Biophys Res Commun 401:321–326

    Article  PubMed  CAS  Google Scholar 

  52. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  PubMed  CAS  Google Scholar 

  53. Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  PubMed  CAS  Google Scholar 

  54. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  55. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  56. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    Article  PubMed  CAS  Google Scholar 

  57. Oh SI, Lee CK, Cho KJ et al (2012) Technological progress in generation of induced pluripotent stem cells for clinical applications. ScientificWorldJournal 2012:417809. Epub 2012 Mar 12

  58. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  PubMed  CAS  Google Scholar 

  59. Greenow K, Clarke AR (2012) Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol Rev 92:75–99

    Article  PubMed  CAS  Google Scholar 

  60. Oh Y, Wei H, Ma D et al (2012) Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart 98:443–449

    Article  PubMed  CAS  Google Scholar 

  61. Okita K, Nakagawa M, Hyenjong H et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  62. Tang C, Lee AS, Volkmer JP et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  PubMed  CAS  Google Scholar 

  63. Nelson TJ, Martinez-Fernandez A, Yamada S et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416

    Article  PubMed  Google Scholar 

  64. Mauritz C, Martens A, Rojas SV et al (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 32:2634–2641

    Article  PubMed  CAS  Google Scholar 

  65. Choudry FA, Mathur A (2011) Stem cell therapy in cardiology. Regen Med 6(6 Suppl):17–23

    Article  PubMed  CAS  Google Scholar 

  66. Malliaras K, Marbán E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185

    Article  PubMed  Google Scholar 

  67. Abdelli LS, Merino H, Rocher CM, Singla DK (2012) Cell therapy in the heart. Can J Physiol Pharmacol 90:307–315

    Article  PubMed  CAS  Google Scholar 

  68. Duran JM, Taghavi S, George JC (2012) The need for standardized protocols for future clinical trials of cell therapy. Transl Res 160(6):399–410

    Article  PubMed  Google Scholar 

  69. Durdu S, Deniz GC, Dogan A et al (2012) Stem cell mediated cardiovascular repair. Can J Physiol Pharmacol 90:337–351

    Article  PubMed  CAS  Google Scholar 

  70. Al Kindi A, Ge Y, Shum-Tim D, Chiu RC (2008) Cellular cardiomyoplasty: routes of cell delivery and retention. Front Biosci 13:2421–2434

    Article  PubMed  CAS  Google Scholar 

  71. Anderl JN, Robey TE, Stayton PS, Murry CE (2009) Retention and biodistribution of microspheres injected into ischemic myocardium. J Biomed Mater Res A 88:704–710

    PubMed  Google Scholar 

  72. Menasché P, Alfieri O, Janssens S et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  73. Povsic TJ, O’Connor CM, Henry T et al (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162:654–662

    Article  PubMed  Google Scholar 

  74. Duckers HJ, Houtgraaf J, Hehrlein C et al (2011) Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention 6:805–812

    Article  PubMed  Google Scholar 

  75. Beitnes JO, Hopp E, Lunde K et al (2009) Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart 95:1983–1989

    Article  PubMed  CAS  Google Scholar 

  76. Assmus B, Rolf A, Erbs S et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3:89–96

    Article  PubMed  Google Scholar 

  77. Pokushalov E, Romanov A, Chernyavsky A et al (2010) Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res 3:160–168

    Article  PubMed  Google Scholar 

  78. Ahmadi H, Farahani MM, Kouhkan A et al (2012) Five-year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction. Arch Iran Med 15:32–35

    PubMed  Google Scholar 

  79. van der Laan A, Hirsch A, Nijveldt R et al (2008) Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth Heart J 16:436–439

    Article  PubMed  Google Scholar 

  80. Yousef M, Schannwell CM, Köstering M et al (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 53:2262–2269

    Article  PubMed  Google Scholar 

  81. Strauer BE, Yousef M, Schannwell CM (2010) The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 12:721–729

    Article  PubMed  Google Scholar 

  82. Lamy A, Devereaux PJ, Prabhakaran D et al (2012) Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med 366:1489–1497

    Article  PubMed  CAS  Google Scholar 

  83. Clifford DM, Fisher SA, Brunskill SJ et al (2012) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2, CD006536

    PubMed  Google Scholar 

  84. Zhao Q, Ye X (2011) Additive value of adult bone-marrow-derived cell transplantation to conventional revascularization in chronic ischemic heart disease: a systemic review and meta-analysis. Expert Opin Biol Ther 11:1569–1579

    Article  PubMed  Google Scholar 

  85. Donndorf P, Kundt G, Kaminski A et al (2011) Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis. J Thorac Cardiovasc Surg 142:911–920

    Article  PubMed  Google Scholar 

  86. Qayyum AA, Haack-Sørensen M, Mathiasen AB et al (2012) Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med 7:421–428

    Article  PubMed  CAS  Google Scholar 

  87. Houtgraaf JH, den Dekker WK, van Dalen BM et al (2012) First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59:539–540

    Article  PubMed  Google Scholar 

  88. Li TS, Cheng K, Malliaras K et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953

    Article  PubMed  Google Scholar 

  89. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  Google Scholar 

  90. Bolli R, Chugh AR, D’Amario D et al (2012) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  Google Scholar 

  91. Tatooles A, Stoddard MF, Lima JA et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–S64

    PubMed  Google Scholar 

  92. Kao RL, Ganote E, Pennington DG, Borwder IW (2007) Myocardial regeneration, tissue engineering and therapy. In: Prakash S (ed) Artificial cells, cell engineering and therapy, 1st edn. Woodhead Publishing Ltd., Cambridge, England, pp 349–365

    Chapter  Google Scholar 

  93. Ellison GM, Torella D, Dellegrottaglie S et al (2011) Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol 58:977–986

    Article  PubMed  CAS  Google Scholar 

  94. Cheng K, Li TS, Malliaras K et al (2010) Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res 106:1570–1581

    Article  PubMed  CAS  Google Scholar 

  95. Lu HH, Li YF, Sheng ZQ, Wang Y (2012) Preconditioning of stem cells for the treatment of myocardial infarction. Chin Med J (Engl) 125:378–384

    CAS  Google Scholar 

  96. Haider HK, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288:H2557–H2567

    Article  PubMed  CAS  Google Scholar 

  97. Bittira B, Kuang JQ, Al-Khaldi A, Shum-Tim D, Chiu RC (2002) In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg 74:1154–1159

    Article  PubMed  Google Scholar 

  98. Grajales L, García J, Geenen DL (2012) Induction of cardiac myogenic lineage development differs between mesenchymal and satellite cells and is accelerated by bone morphogenetic protein-4. J Mol Cell Cardiol 53:382–391

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lamb, E.K., Kao, G.W., Kao, R.L. (2013). Cellular Cardiomyoplasty: Its Past, Present, and Future. In: Kao, R. (eds) Cellular Cardiomyoplasty. Methods in Molecular Biology, vol 1036. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-511-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-511-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-510-1

  • Online ISBN: 978-1-62703-511-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics