Skip to main content

Pluripotent Stem Cells for Neural Regeneration

  • Chapter
  • First Online:
  • 2067 Accesses

Abstract

Neurodegenerative disorders remain challenging to treat using traditional pharmacological or neurosurgical approaches. In contrast, cell therapy is a promising strategy for ameliorating irreparable brain tissue damage during the process of neurogenesis. Currently, more efficient methodologies for isolating neural stem cells from a plethora of sources including hematopoietic stem cells and mesenchymal stem cells are continually being developed. The availability of neural stem cells would ensure that damaged neural tissues can be regenerated and fast-track translation from bed to bedside. In this chapter, we discuss various sources of neural stem cells, strategies for their isolation and characterization, and application of stem cells in the treatment of neurological disorders. Historically, clinical application of cell therapy for treating neurological diseases has been hindered due to numerous technical difficulties. Therefore, these barriers and potential ways of addressing them are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16(10):2187–2194

    Article  PubMed  CAS  Google Scholar 

  2. Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V (2007) Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25(2):263–270

    Article  PubMed  CAS  Google Scholar 

  3. ISSCF procs. Embryonic stem cells and factors of rejection. Mumbai, 2005

    Google Scholar 

  4. Cotsarelis G, Cheng SZ, Dong G, Park JH, Lee JE, Eom YW et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  PubMed  CAS  Google Scholar 

  5. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214

    Article  PubMed  CAS  Google Scholar 

  6. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94(8):4080–4085

    Article  PubMed  CAS  Google Scholar 

  7. Graziadei PP, Graziadei MGA (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentiation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J Neurocytol 9:145–162

    Article  PubMed  CAS  Google Scholar 

  8. Galli R, Gritti A, Bonfanti L, Vescovi AL (2003) Neural stem cells an overview. Circ Res 92:598–608

    Article  PubMed  CAS  Google Scholar 

  9. Hermann A, Maisel M, Wegner F, Liebau S, Kim DW, Gerlach M et al (2006) Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells 24(4):949–964

    Article  PubMed  CAS  Google Scholar 

  10. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  11. Rao M (2006) Neural development and neural stem cell, 2nd edn. Humana Press, Totowa

    Book  Google Scholar 

  12. Kornblum HI, Hussain R, Wiesen J, Miettinen P, Zurcher SD, Chow K et al (1998) Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 53(6):697–717

    Article  PubMed  CAS  Google Scholar 

  13. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97(26):14720–14725

    Article  PubMed  CAS  Google Scholar 

  14. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345

    Article  PubMed  CAS  Google Scholar 

  15. Lu J, Féron F, Ho SM, Mackay-Sim A, Waite PM (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889(1–2):344–357

    Article  PubMed  CAS  Google Scholar 

  16. Lu J, Ashwell K (2002) Olfactory ensheathing cells: their potential use for repairing the injured spinal cord. Spine 27(8):887–892

    Article  PubMed  Google Scholar 

  17. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R et al (2003) Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116(10):1488–1491

    Google Scholar 

  18. Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(12):2951–2960

    Article  PubMed  Google Scholar 

  19. Huang HC (2006) Young Tai-Horng, differences in the effect on neural stem cells of fetal bovine serum in substrate-coated and soluble form. Biomaterials 27:5901–5908

    Article  Google Scholar 

  20. Chen L, Huang H, Zhang J, Zhang F, Liu Y, Xi H et al (2007) Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21(9):961–966

    PubMed  Google Scholar 

  21. Chew S, Khandji AG, Montes J, Mitsumoto H, Gordon PH (2007) Olfactory ensheathing glia injections in Beijing: misleading patients with ALS. Amyotroph Lateral Scler 8(5):314–316

    Article  PubMed  Google Scholar 

  22. Mackay SA, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131:2376–2386

    Article  PubMed  CAS  Google Scholar 

  23. Larson BL, Ylostalo J, Prockop DJ (2008) Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 26:193–201

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD (2003) Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35(1):26–34

    Article  Google Scholar 

  25. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99(4):2199–2204

    Article  PubMed  CAS  Google Scholar 

  26. Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351

    Article  PubMed  CAS  Google Scholar 

  27. Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K et al (2003) Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23(3):169–180

    Article  PubMed  Google Scholar 

  28. Zurita M, Vaquero J (2004) Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 15(7):1105–1108

    Article  PubMed  Google Scholar 

  29. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24(28):6402–6409

    Article  PubMed  CAS  Google Scholar 

  30. Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190(1):17–31

    Article  PubMed  Google Scholar 

  31. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191(2):344–360

    Article  PubMed  CAS  Google Scholar 

  32. Neuhuber B, Himes TB, Shumsky JS, Gallo G, Fischer I (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035(1):73–85

    Article  PubMed  CAS  Google Scholar 

  33. Kamada T, Koda M, Dezawa M, Anahara R, Toyama Y, Yoshinaga K et al (2005) Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol 64(1):37–45

    PubMed  Google Scholar 

  34. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  PubMed  CAS  Google Scholar 

  35. Sykova E, Homola A, Mazanec R, Lachmann H, Konrádová SL, Kobylka P et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15:1–100

    Article  Google Scholar 

  36. Nishida K, Tanaka N, Nakanishi K, Kamei N, Hamasaki T, Yanada S et al (2006) Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. Neuroreport 17(12):1269–1272

    Article  PubMed  Google Scholar 

  37. Yoshihara H, Shumsky JS, Neuhuber B, Otsuka T, Fischer I, Murray M (2006) Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Brain Res 1119(1):65–75

    Article  PubMed  CAS  Google Scholar 

  38. Cao Q, Ding P, Lu J et al (2007) 2′, 3′-Cyclic nucleotide 3′-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord. J Neurosci Res 85(1):116–130

    Article  PubMed  CAS  Google Scholar 

  39. Lu P, Jones LL, Mark TH (2007) Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol 203(1):8–21

    Article  PubMed  CAS  Google Scholar 

  40. Shi E, Kazui T, Jiang X, Washiyama N, Yamashita K, Terada H et al (2007) Therapeutic benefit of intrathecal injection of marrow stromal cells on ischemia-injured spinal cord. Ann Thorac Surg 83(4):1484–1490

    Article  PubMed  Google Scholar 

  41. Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C et al (2007) Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 1149:223–231

    Article  PubMed  CAS  Google Scholar 

  42. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR (2003) Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 12:271–278

    Article  PubMed  CAS  Google Scholar 

  43. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ et al (2004) Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant 13(2):113–122

    PubMed  Google Scholar 

  44. Li HJ, Liu HY, Zhao ZM, Lu SH, Yang RC, Zhu HF et al (2004) Transplantation of human umbilical cord stem cells improves neurological function recovery after spinal cord injury in rats. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 26(1):38–42

    PubMed  Google Scholar 

  45. Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S et al (2006) The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine 5(5):424–433

    Article  PubMed  Google Scholar 

  46. Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH (2008) Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res 33(1):134–149

    Article  PubMed  CAS  Google Scholar 

  47. Walczak P, Chen N, Eve D, Hudson J, Zigova T, Sanchez-Ramos J et al (2007) Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull 74(1–3):155–163

    Article  PubMed  CAS  Google Scholar 

  48. Cho SR, Yang MS, Yim SH et al (2008) Neurally induced umbilical cord blood cells modestly repair injured spinal cords. Neuroreport 19(13):1259–1263

    Article  PubMed  Google Scholar 

  49. David HN, Haelewyn B, Rouillon C, Lecoq M, Chazalviel L, Apiou G et al (2008) Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia. FASEB J 22(4):1275–1286

    Article  PubMed  Google Scholar 

  50. Nurse CA, Macintyre L, Diamond J (1984) Reinnervation of the rat touch dome restores the Merkel cell population reduced after denervation. Neuroscience 13:563–571

    Article  PubMed  CAS  Google Scholar 

  51. Kolata G (2007) Scientists bypass need for embryo to get stem cells, The New York Times. Retrieved on 11 Dec 2007

    Google Scholar 

  52. Vogel G, Holden C (2007) Developmental biology. Field leaps forward with new stem cell advances. Science 318(5854):1224–1225

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  54. Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, ­keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

    Article  PubMed  CAS  Google Scholar 

  55. Sieber-Blum M, Grim M (2004) The adult hair follicle: cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today 72:162–172

    Article  PubMed  CAS  Google Scholar 

  56. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    PubMed  CAS  Google Scholar 

  57. Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, André M et al (2005) Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett 579(17):3487–3492

    Article  PubMed  CAS  Google Scholar 

  58. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23(3):412–423

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Article  PubMed  CAS  Google Scholar 

  60. Priest RE, Marimuthu KM, Priest JH (1978) Origin of cells in human amniotic fluid cultures. Lab Invest 39:106–109

    PubMed  CAS  Google Scholar 

  61. Prusa AR, Hengstschläger M (2002) Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 8:253–257

    Google Scholar 

  62. Milunsky A (1998) Genetic disorders and the fetus: diagnosis, prevention, and treatment. The Johns Hopkins University Press, Baltimore, pp 128–149

    Google Scholar 

  63. Tyden O, Bergstrom S, Nilsson BA (1981) Origin of amniotic fluid cells in mid-trimester pregnancies. Br J Obstet Gynaecol 88:278–286

    Article  PubMed  CAS  Google Scholar 

  64. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18:1489–1493

    Article  PubMed  Google Scholar 

  65. Prusa AR, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A et al (2004) Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 191:309–314

    Article  PubMed  Google Scholar 

  66. Mitka M (2001) Amniotic cells show promise for fetal tissue engineering. JAMA 286:2083

    Article  PubMed  CAS  Google Scholar 

  67. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36:1662–1665

    Article  PubMed  CAS  Google Scholar 

  68. Barami K, Diaz FG (2000) Cellular transplantation and spinal cord injury. Neurosurgery 47:691–700

    PubMed  CAS  Google Scholar 

  69. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M et al (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  PubMed  CAS  Google Scholar 

  70. Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O et al (2003) Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 142:10–16

    Article  PubMed  CAS  Google Scholar 

  71. Franzen R, Schoenen J, Leprince P, Joosten E, Moonen G, Martin D (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J Neurosci Res 51(3):316–327

    Article  PubMed  CAS  Google Scholar 

  72. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R et al (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181

    Article  PubMed  Google Scholar 

  73. Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ et al (2004) Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76:453–465

    Article  PubMed  CAS  Google Scholar 

  74. Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U, Smirnov I et al (2003) Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 23:8808–8819

    PubMed  CAS  Google Scholar 

  75. Brook GA, Houweling DA, Gieling RG, Hermanns T, Joosten EA, Bär DP et al (2000) Attempted endogenous tissue repair following experimental spinal cord injury in the rat: involvement of cell adhesion molecules L1 and NCAM? Eur J Neurosci 12:3224–3238

    Article  PubMed  CAS  Google Scholar 

  76. Jasmin L, Janni G, Moallem TM, Lappi DA, Ohara PT (2000) Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. J Neurosci 20:9215–9223

    PubMed  CAS  Google Scholar 

  77. Von Euler M, Janson AM, Larsen JO, Seiger A, Forno L, Bunge MB et al (2002) Spontaneous axonal regeneration in rodent spinal cord after ischemic injury. J Neuropathol Exp Neurol 61:64–75

    Google Scholar 

  78. Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393

    Article  PubMed  CAS  Google Scholar 

  79. Pennon A, Calancie B, Oudega M, Noga BR (2001) Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 64:533–541

    Article  Google Scholar 

  80. Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD (2001) Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 21:944–950

    PubMed  CAS  Google Scholar 

  81. Guettier C (2005) Which stem cells for adult liver? Ann Pathol 25:33–44

    Article  PubMed  Google Scholar 

  82. Rollini P, Kaiser S, Faes-van’t Hull E, Kapp U, Leyvraz S (2004) Long-term expansion of transplantable human fetal liver hematopoietic stem cells. Blood 103:1166–1170

    Article  PubMed  CAS  Google Scholar 

  83. Suen PM, Leung PS (2005) Pancreatic stem cells: a glimmer of hope for diabetes? J Pancreas 6:422–424

    Google Scholar 

  84. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P (2004) Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. J Neurosci Res 78(5):625–636

    Article  PubMed  CAS  Google Scholar 

  85. Stocum DL, Zupanc GKH (2008) Stretching the limits: stem cells in regeneration science. Dev Dyn 237(12):3648–3671

    Article  PubMed  CAS  Google Scholar 

  86. Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277

    Article  PubMed  CAS  Google Scholar 

  87. Bjugstad KB, Redmond DE, Teng YD et al (2005) Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous dopamine neurons found in the striatum: a return to control measure. Cell Transplant 14:183–192

    Article  PubMed  Google Scholar 

  88. Bjugstad KB, Teng YD, Redmond DE, Elsworth JD, Roth RH, Cornelius SK et al (2008) Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp Neurol 211:362–369

    Article  PubMed  CAS  Google Scholar 

  89. Emborg ME, Ebert AD, Moirano J, Peng S, Suzuki M, Capowski E et al (2008) GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant 17:383–395

    PubMed  Google Scholar 

  90. Windrem MS, Roy NS, Wang J, Nunes M, Benraiss A, Goodman R et al (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 69:966–975

    Article  PubMed  CAS  Google Scholar 

  91. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N et al (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2:553–565

    Article  PubMed  CAS  Google Scholar 

  92. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN et al (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219

    Article  PubMed  Google Scholar 

  93. Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE (2009) Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 514:297–309

    Article  PubMed  CAS  Google Scholar 

  94. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M et al (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    Article  PubMed  CAS  Google Scholar 

  95. Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P et al (2007) GDNF-secreting human neural progenitor cells protect dyingmotor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2:e689

    Article  PubMed  Google Scholar 

  96. Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26:605–614

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ameer Basha Paspala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paspala, S.A.B., Khan, A.A., Vishwakarma, S., Murthy, T.V.R. (2013). Pluripotent Stem Cells for Neural Regeneration. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_16

Download citation

Publish with us

Policies and ethics