Skip to main content

Measurement of Protein–Ligand Complex Formation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Experimental approaches to detect, measure, and quantify protein–ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein–ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thompson G, Owen D, Chalk PA, Lowe PN (1998) Delineation of the Cdc42/Rac-binding domain of p21-activated kinase. Biochemistry 37:7885–7891

    Article  PubMed  CAS  Google Scholar 

  2. Bisswanger H (2008) Enzyme kinetics: principles and methods, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  3. Sigmundsson K et al (2002) Determination of active concentrations and association and dissociation rate constants of interacting biomolecules: an analytical solution to the theory for kinetic and mass transport limitations in biosensor technology and its experimental verification. Biochemistry 41:8263–8276

    Article  PubMed  CAS  Google Scholar 

  4. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for drug optimization. Nat Rev Drug Discov 5:730–739

    Article  PubMed  CAS  Google Scholar 

  5. Winzor DJ (2001) Quantitative characterization of ligand binding by chromatography. In: Harding SE, Chowdhry BZ (eds) Protein-ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford

    Google Scholar 

  6. Harding SE, Winzor DJ (2001) Sedimentation velocity and sedimentation equilibrium ultracentrifugation. In: Harding SE, Chowdry BZ (eds) Protein-ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford

    Google Scholar 

  7. Chung CW, Lowe PN (2007) Biophysical methods: mechanism of action studies. In: Jhoti H, Leach AR (eds) Structure-based drug discovery. Springer, Dordrecht, Netherlands

    Google Scholar 

  8. Xu Z et al (2009) Development of high-throughput TR-FRET and AlphaScreen assays for identification of potent inhibitors of PDK1. J Biomol Screen 10:1257–1262

    Article  Google Scholar 

  9. Chung CW (2007) The use of biophysical methods increases success in obtaining liganded crystal structures. Acta Crystallogr D Biol Crystallogr 63:62–71

    Article  PubMed  CAS  Google Scholar 

  10. Crowther GJ et al (2009) Buffer optimization of thermal melt assays of Plasmodium proteins for detection of small-molecule ligands. J Biomol Screen 6:700–707

    Article  Google Scholar 

  11. Bligh SWA, Haley T, Lowe PN (2003) Measurement of dissociation constants of inhibitors binding to Src SH2 domain protein by non-covalent electrospray ionization mass spectrometry. J Mol Recognit 16:139–147

    Article  PubMed  CAS  Google Scholar 

  12. Cooper MA (ed) (2009) Label-free biosensors: techniques and applications. Cambridge University Press, Cambridge

    Google Scholar 

  13. Tanega C et al (2009) Comparison of bioluminescent kinase assays using substrate depletion and product formation. Assay Drug Dev Technol 7:606–614

    Article  PubMed  CAS  Google Scholar 

  14. Okoh MP, Hunter JL, Corrie JE, Webb MR (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45:14764–14771

    Article  PubMed  CAS  Google Scholar 

  15. Harder KW et al (1994) Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J 298:395–401

    PubMed  CAS  Google Scholar 

  16. Singh P, Ward WHJ (2008) Alternative assay formats to identify diverse inhibitors of protein kinases. Expert Opin Drug Discov 3:819–831

    Article  PubMed  CAS  Google Scholar 

  17. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Chapter 18: Protein interaction technologies, Protocol #3: Detection of protein-protein interactions using the GST fusion protein pull-down technique, 3rd edn. Cold Spring Harbor Laboratory Press, Plainview, New York

    Google Scholar 

  18. Zhou Z et al (2011) Structural basis for recognition of centromere histone variant CenH3 by chaperone Scm3. Nature 471:234–237

    Article  Google Scholar 

  19. Bonifacino JS, Dell’Angelica EC, Springer TA (2006) Immunoprecipitation. In: Crawley JN (ed) Current Protocols in Neuroscience. Wiley, New York

    Google Scholar 

  20. Kaboord B, Perr M (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol Biol 424:349–364

    Article  PubMed  CAS  Google Scholar 

  21. Brymora A, Valova VA, Robinson PJ (2004) Protein-protein interactions identified by pull-down experiments and mass spectrometry. In: Bonifacino JS (ed) Current Protocols in Cell Biology. Wiley, New York

    Google Scholar 

  22. Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654

    Article  PubMed  CAS  Google Scholar 

  23. Butland G et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  PubMed  CAS  Google Scholar 

  24. Gavin AC et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  PubMed  CAS  Google Scholar 

  25. Krogan NJ et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  26. Roehrl MH, Wang JY, Wagner G (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 43:16056–16066

    Article  PubMed  CAS  Google Scholar 

  27. Roehrl MH, Wang JY, Wagner G (2004) Discovery of small-molecule inhibitors of the NFAT–calcineurin interaction by competitive high-throughput fluorescence polarization screening. Biochemistry 43:16067–16075

    Article  PubMed  CAS  Google Scholar 

  28. Copeland RA (2003) Mechanistic considerations in high throughput screening. Anal Biochem 320:1–12

    Article  PubMed  CAS  Google Scholar 

  29. Fersht A (1999) Structure and mechanism in protein science. Freeman, New York

    Google Scholar 

  30. Segel IH (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  31. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism and data analysis. Wiley, New York

    Google Scholar 

  32. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Wiley, New York

    Google Scholar 

  33. Yang J, Copeland RA, Lai Z (2009) Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes. J Biomol Screen 2:111–120

    Article  Google Scholar 

  34. Venäläinen JI et al (2004) Slow-binding inhibitors of prolyl oligopeptidase with different functional groups at the P1 site. Biochem J 382:1003–1008

    Article  PubMed  Google Scholar 

  35. Krippendorff BF, Neuhaus R, Lienau P, Reichel A, Huisinga W (2009) Mechanism-based inhibition: deriving KI and kinact directly from time-dependent IC50 values. J Biomol Screen 8:913–923

    Article  Google Scholar 

  36. Morrison JF, Walsh CT (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61:201–301

    PubMed  CAS  Google Scholar 

  37. Mocz G, Helms MK, Jameson DM, Gibbons IR (1998) Probing the nucleotide binding sites of axonemal dynein with the fluorescent nucleotide analogue 2′(3′)-O-(-N-Methylanthraniloyl)-adenosine 5′-triphosphate. Biochemistry 37:9862–9869

    Article  PubMed  CAS  Google Scholar 

  38. Yang X (2010) Dynamic ranges of detection-coupled assays and their effect on IC50 measurements for inhibition of enzymatic reactions. J Biomol Screen 5:556–561

    Article  Google Scholar 

  39. Eccleston JF, Hutchinson JP, White HD (2001) Stopped-flow techniques. In: Harding SE, Chowdhry BZ (eds) Protein-ligand interactions: structure and spectroscopy. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the expert advice and information provided by Pirthipal Singh (Singh Consultancy) in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lowe, P.N., Vaughan, C.K., Daviter, T. (2013). Measurement of Protein–Ligand Complex Formation. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics