Skip to main content

Cell-to-Cell Communication in Astroglia and the Cytoskeletal Impact

  • Protocol
  • First Online:
Book cover The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

  • 1113 Accesses

Abstract

The cytoskeleton constitutes a dynamic intracellular framework for inbound and outbound trafficking of cell organelles and is responsible for cell shaping including cell division. While transport in neuronal compartments has extensively been conquered in particular the shipping of cargo vesicles along microtubules for support of chemical synapses, the supply of molecular constituents to electrical synapses is still enigmatic. Here we describe protocols for proteomic analysis of cytoskeletal elements involved in the trafficking of connexin43, the major gap junction protein expressed in astrocytes. Methods described here offer hands-on instructions for further successful exploration of the cytoskeletal and its interaction with gap junction proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dermietzel R, Spray DC (1998) From neuro-glue (‘Nervenkitt’) to glia: a prologue. Glia 24(1):1–7

    Article  PubMed  CAS  Google Scholar 

  2. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457(7230):675–677. doi:10.1038/457675a

    Article  PubMed  CAS  Google Scholar 

  3. Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44

    Article  PubMed  CAS  Google Scholar 

  4. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806

    PubMed  CAS  Google Scholar 

  5. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14

    Article  PubMed  CAS  Google Scholar 

  6. Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24(1):65–73

    Article  PubMed  CAS  Google Scholar 

  7. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193. doi:10.1038/35058528

    Article  PubMed  CAS  Google Scholar 

  8. Naus CC, Bani-Yaghoub M, Rushlow W, Bechberger JF (1999) Consequences of impaired gap junctional communication in glial cells. Adv Exp Med Biol 468:373–381

    Article  PubMed  CAS  Google Scholar 

  9. Spray DC, Duffy HS, Scemes E (1999) Gap junctions in glia. Types, roles, and plasticity. Adv Exp Med Biol 468:339–359

    Article  PubMed  CAS  Google Scholar 

  10. Rozental R, Giaume C, Spray DC (2000) Gap junctions in the nervous system. Brain Res Brain Res Rev 32(1):11–15

    Article  PubMed  CAS  Google Scholar 

  11. Wolburg H, Rohlmann A (1995) Structure–function relationships in gap junctions. Int Rev Cytol 157:315–373

    Article  PubMed  CAS  Google Scholar 

  12. Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A 86(24):10148–10152

    Article  PubMed  CAS  Google Scholar 

  13. Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32(1):45–56

    Article  PubMed  CAS  Google Scholar 

  14. Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24(18):4313–4323

    Article  PubMed  CAS  Google Scholar 

  15. Nagy JI, Rash JE (2003) Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Commun Adhes 10(4–6):401–406

    PubMed  CAS  Google Scholar 

  16. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia 44(3):205–218

    Article  PubMed  CAS  Google Scholar 

  17. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464(3):356–370

    Article  PubMed  CAS  Google Scholar 

  18. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  PubMed  CAS  Google Scholar 

  19. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26(10):520–522

    Article  PubMed  CAS  Google Scholar 

  20. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    Article  PubMed  CAS  Google Scholar 

  21. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47(1–3):191–215

    Article  PubMed  CAS  Google Scholar 

  22. Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6(1):133–143

    Article  PubMed  CAS  Google Scholar 

  23. Zoidl G, Dermietzel R (2010) Gap junctions in inherited human disease. Pflugers Arch 460(2):451–466

    Article  PubMed  CAS  Google Scholar 

  24. Haupt C, Witte OW, Frahm C (2007) Up-regulation of Connexin43 in the glial scar following photothrombotic ischemic injury. Mol Cell Neurosci 35(1):89–99

    Article  PubMed  CAS  Google Scholar 

  25. Haupt C, Witte OW, Frahm C (2007) Temporal profile of connexin 43 expression after photothrombotic lesion in rat brain. Neuroscience 144(2):562–570

    Article  PubMed  CAS  Google Scholar 

  26. Fallon RF, Goodenough DA (1981) Five-hour half-life of mouse liver gap-junction protein. J Cell Biol 90(2):521–526

    Article  PubMed  CAS  Google Scholar 

  27. Das Sarma J, Meyer RA, Wang F, Abraham V, Lo CW, Koval M (2001) Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci 114(Pt 22):4013–4024

    PubMed  CAS  Google Scholar 

  28. Das Sarma J, Wang F, Koval M (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277(23):20911–20918

    Article  PubMed  CAS  Google Scholar 

  29. Maza J, Mateescu M, Das Sarma J, Koval M (2003) Differential oligomerization of endoplasmic reticulum-retained connexin43/connexin32 chimeras. Cell Commun Adhes 10(4–6):319–322

    PubMed  CAS  Google Scholar 

  30. Falk MM (2000) Biosynthesis and structural composition of gap junction intercellular membrane channels. Eur J Cell Biol 79(8):564–574

    Article  PubMed  CAS  Google Scholar 

  31. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83(4):1359–1400

    PubMed  CAS  Google Scholar 

  32. Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16(3):159–166

    Article  PubMed  CAS  Google Scholar 

  33. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394(Pt 3):527–543

    PubMed  CAS  Google Scholar 

  34. Segretain D, Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662(1–2):3–21

    PubMed  CAS  Google Scholar 

  35. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567):503–507

    Article  PubMed  CAS  Google Scholar 

  36. Martin PE, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114(Pt 21):3845–3855

    PubMed  CAS  Google Scholar 

  37. Thomas T, Jordan K, Laird DW (2001) Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun Adhes 8(4–6):231–236

    Article  PubMed  CAS  Google Scholar 

  38. Johnson RG, Meyer RA, Li XR, Preus DM, Tan L, Grunenwald H, Paulson AF, Laird DW, Sheridan JD (2002) Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules. Exp Cell Res 275(1):67–80

    Article  PubMed  CAS  Google Scholar 

  39. Guo Y, Martinez-Williams C, Rannels DE (2003) Gap junction-microtubule associations in rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 285(6):L1213–L1221

    PubMed  CAS  Google Scholar 

  40. Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128(3):547–560

    Article  PubMed  CAS  Google Scholar 

  41. Prochnow N, Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130(1):71–77

    Article  PubMed  CAS  Google Scholar 

  42. Laing JG, Koval M, Steinberg TH (2005) Association with ZO-1 correlates with plasma membrane partitioning in truncated connexin45 mutants. J Membr Biol 207(1):45–53

    Article  PubMed  CAS  Google Scholar 

  43. Larsen WJ, Tung HN, Murray SA, Swenson CA (1979) Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J Cell Biol 83(3):576–587

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe H, Washioka H, Tonosaki A (1988) Gap junction and its cytoskeletal undercoats as involved in invagination-endocytosis. Tohoku J Exp Med 156(2):175–190

    Article  PubMed  CAS  Google Scholar 

  45. Murray SA, Williams SY, Dillard CY, Narayanan SK, McCauley J (1997) Relationship of cytoskeletal filaments to annular gap junction expression in human adrenal cortical tumor cells in culture. Exp Cell Res 234(2):398–404

    Article  PubMed  CAS  Google Scholar 

  46. Jordan K, Chodock R, Hand AR, Laird DW (2001) The origin of annular junctions: a mechanism of gap junction internalization. J Cell Sci 114(Pt 4):763–773

    PubMed  CAS  Google Scholar 

  47. Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM (2007) Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell 18(2):337–347

    Article  PubMed  CAS  Google Scholar 

  48. Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D, Pointis G (2008) Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121(Pt 24):4069–4078

    Article  PubMed  CAS  Google Scholar 

  49. Fiorini C, Gilleron J, Carette D, Valette A, Tilloy A, Chevalier S, Segretain D, Pointis G (2008) Accelerated internalization of junctional membrane proteins (connexin 43, N-cadherin and ZO-1) within endocytic vacuoles: an early event of DDT carcinogenicity. Biochim Biophys Acta 1778(1):56–67

    Article  PubMed  CAS  Google Scholar 

  50. Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14(8):650–658

    Article  PubMed  CAS  Google Scholar 

  51. VanSlyke JK, Musil LS (2005) Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 16(11):5247–5257

    Article  PubMed  CAS  Google Scholar 

  52. Kelly SM, Vanslyke JK, Musil LS (2007) Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress. Mol Biol Cell 18(11):4279–4291

    Article  PubMed  CAS  Google Scholar 

  53. Olk S, Turchinovich A, Grzendowski M, Stuhler K, Meyer HE, Zoidl G, Dermietzel R (2010) Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia 58(4):494–505

    PubMed  Google Scholar 

  54. Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11(5):1421–1432

    PubMed  CAS  Google Scholar 

  55. Takenaga K, Kozlova EN (2006) Role of intracellular S100A4 for migration of rat astrocytes. Glia 53(3):313–321

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Dermietzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zoidl, G., Olk, S., Tuchinowitz, A., Dermietzel, R. (2013). Cell-to-Cell Communication in Astroglia and the Cytoskeletal Impact. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics