Skip to main content

Microfluidic Interface Technology Based on Stereolithography for Glass-Based Lab-on-a-Chips

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE T Electron Dev ED-26:1880–1886

    Article  CAS  Google Scholar 

  2. Bakajin O, Duke TAJ, Tegenfeldt J, Chou C-F, Chan SS, Austin RH, Cox EC (2001) Separation of 100 kilobase DNA molecules in 10 seconds. Anal Chem 73:6053–6056

    Article  CAS  Google Scholar 

  3. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  CAS  Google Scholar 

  4. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 11:1109–1111

    Google Scholar 

  5. Chang KS, Tanaka S, Chang CL, Esashi M, G. Benjamin Hocker (2003). The Institute of Electrical and Electronics Engineers, Inc. (IEEE). Combustor-integrated micro-fuel processor with suspended membrane structure. In: Tech dig 12th int. conf. solid-state sensors and actuators workshop (Transducers’03), Boston, USA, 2003, pp 635–638

    Google Scholar 

  6. Han K-H, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273

    Article  CAS  Google Scholar 

  7. Man PF, Jones DK, Mastrangelo CH, Kazuo Sato and Shuichi Shoji (1997). The Institute of Electrical and Electronics Engineers, Inc. (IEEE). Microfuidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. In: International workshop on micro electromechanical systems (MEMS 97), Nagoya, Japan, pp 311–316

    Google Scholar 

  8. Grover WH, Skelley AM, Lui CN, Lagally ET, Mathies RA (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensor Actuat B 89:315–323

    Article  Google Scholar 

  9. Han A, Graff M, Mohanty SK, Edwards TL, Han K-H, Frazier AB (2003) Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Lab Chip 3:150157

    Google Scholar 

  10. Fredrickson K, Fan ZH (2004) Macro-to-micro interfaces for microfluidic devices. Lab Chip 4:526–533

    Article  CAS  Google Scholar 

  11. Stachowiak TB, Rohr T, Hilder EF, Peterson DS, Yi M, Svec F, Fréchet JMJ (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24:3689–3693

    Google Scholar 

  12. Pattekar V, Kothare MV (2003) Novel microfluidic interconnectors for high temperature and pressure applications. J Micromech Microeng 13:337–345

    Google Scholar 

  13. Chen H, Acharya D, Gajraj A, Meiners J-C (2003) Robust interconnects and packaging for microfluidic elastomer chips. Anal Chem 75:5287–5291

    Article  CAS  Google Scholar 

  14. Gray BL, Jaeggi D, Mourlas NJ, van Drieenhuizen BP, Williams KR, Maluf NI, Kovacs GTA (1999) Novel interconnection technologies for integrated microfluidic systems. Sensor Actuat A 77:57–65

    Article  Google Scholar 

  15. Nittis V, Fortt R, Legge CH, de Mello AJ (2001) A high-pressure interconnect for chemical microsystem applications. Lab Chip 1:148–152

    Article  CAS  Google Scholar 

  16. Verlee D, Alcock A, Clark G, Huang TM, Kantor S, Nemcek T, Norlie J, Pan J, Walsworth F, Wong ST (1996) Fluid circuit technology: integrated interconnect technology for miniature fluidic devices. Tech Dig Solid State Sensor Actuat (Hilton Head, USA 1996:9–14

    Google Scholar 

  17. Yao TJ, Lee S, Fang W, Tai Y-C, Hiroki Kuwano and Isao Shimoyama (2000). The Institute of Electrical and Electronics Engineers, Inc. (IEEE). A micromachined rubber O-ring microfluidic coupler. In: Proc IEEE micro electro mechanical systems conference (MEMS 2000), Miyazaki, Japan, 2000, pp 624–627

    Google Scholar 

  18. Meng E, Wu S, Tai Y-C, A. van den Berg, W. Olthuis and P. Bergveld (2000). Kluwer Academic Publishers. Micromachined fluidic couplers. In: Proceedings of the micro total analysis systems symposium (μTAS), Enschede, Netherlands, 2000, pp 41–44

    Google Scholar 

  19. González C, Collins SD, Smith RL (1998) Fluidic interconnects for modular assembly of chemical microsystems. Sensor Actuat B 49:40–45

    Article  Google Scholar 

  20. Gray BL, Collins SD, Smith RL (2004) Interlocking mechanical and fluidic interconnections for microfluidic circuit boards. Sensor Actuat A 112:18–24

    Article  Google Scholar 

  21. Puntambekar CA, Ahn CH (2002) Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems. J Micromech Microeng 12:35–40

    Google Scholar 

  22. Yang Z, Maeda R (2003) Socket with built-in valves for the interconnection of microfluidic chips to macro constituents. J Chromatogr A 1013:29

    Article  CAS  Google Scholar 

  23. Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw-Hill Co., Boston

    Google Scholar 

  24. Hosokawa K, Maeda R (2000) A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J Micromech Microeng 10:415–420

    Article  CAS  Google Scholar 

  25. Wang Y-C, Choi MH, Han J (2004) Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal Chem 76:4426–4431

    Article  CAS  Google Scholar 

  26. Lee S, Jeong W, Beebe DJ (2003) Microfluidic valve with cored glass microneedle for microinjection. Lab Chip 3:164–167

    Article  CAS  Google Scholar 

  27. Ren X, Bachman M, Sims C, Li GP, Allbritton N (2001) Electroosmotic properties of microfluidic channels composed of poly (dimethysiloxane). J Chromatogr B 762:117–125

    Article  CAS  Google Scholar 

  28. Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton N (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal Chem 74:4117–4123

    Article  CAS  Google Scholar 

  29. Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF, Norris PM, Landers JP (1997) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–733

    Article  Google Scholar 

  30. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micro­machining a miniaturized capillary electrophoresis based chemical analysis system on a chip. Science 261:895–897

    Article  CAS  Google Scholar 

  31. Giordano BC, Jin L, Couch AJ, Ferrance JP, Landers JP (2004) Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions. Anal Chem 76:4705–4714

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Ho Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Han, SI., Han, KH. (2013). Microfluidic Interface Technology Based on Stereolithography for Glass-Based Lab-on-a-Chips. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics