Skip to main content

Pig Neural Cells Derived from Foetal Mesencephalon as Cell Source for Intracerebral Xenotransplantation

  • Protocol
  • First Online:
Xenotransplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 885))

Abstract

Intracerebral cell transplantation offers the possibility of replacing lost neurons in case of neurodegenerative disorders. To date, the best functional recovery for Parkinson’s patients has been obtained using neuroblasts derived from human foetal mesencephalon, but the ethical and practical problems relative to the use of human foetal tissue lead to consideration of alternative sources of cells. In this regard, porcine neuroblasts appear as a valuable source as these cells are available in large quantity and programmed to extend long neurites as human neurons. However, the potential use of pig neural cells in the clinical setting depends on efficient and safe immunosuppression. So, most experimental work in this domain aims at developing immunosuppressive treatments specifically adapted to the central nervous system. In such perspective, transplantation of porcine mesencephalic neuroblasts into the striatum of the adult rat brain is of great interest. Indeed, rejection of intracerebral xenografts has been quite well described in rats, and graft survival can be easily monitored in a rat model of Parkinson’s disease. In the present chapter, we describe the methods for isolating neuroblasts from foetal porcine mesencephalon as well as the technique of intracerebral transplantation in adult immunocompetent rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isacson O, Deacon T (1997) Neural transplantation studies reveal the brain’s capacity for continuous reconstruction. Trends Neurosci 20:477–482

    Article  PubMed  CAS  Google Scholar 

  2. Herman JP, Abrous ND (1994) Dopaminergic neural grafts after fifteen years: results and perpectives. Prog Neurobiol 44:1–35

    Article  PubMed  CAS  Google Scholar 

  3. Kordower JH, Freeman TB, Snow B et al (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332:1118–1124

    Article  PubMed  CAS  Google Scholar 

  4. Lindvall O, Sawle G, Widner et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35:172–180

    Article  PubMed  CAS  Google Scholar 

  5. Piccini P, Brooks DJ, Bjorklund A et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

    Article  PubMed  CAS  Google Scholar 

  6. Hagell P, Piccini P, Bjorklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628

    PubMed  CAS  Google Scholar 

  7. Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci 27:8011–8022

    Article  PubMed  CAS  Google Scholar 

  8. Olanow CW, Gracies JM, Goetz CG et al (2009) Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson’s disease: a double blind video-based analysis. Mov Disord 24:336–343

    Article  PubMed  Google Scholar 

  9. Freeman TB, Wojak JC, Brandeis L et al (1988) Cross-species intracerebral grafting of embryonic swine dopaminergic neurons. Prog Brain Res 78:473–477

    Article  PubMed  CAS  Google Scholar 

  10. Galpern WR, Burns LH, Deacon TW, Dinsmore J, Isacson O (1996) Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp Neurol 140:1–13

    Article  PubMed  CAS  Google Scholar 

  11. Deacon TW, Pakzaban P, Burns LH, Dinsmore J, Isacson O (1994) Cytoarchitectonic development, axon-glia relationships, and long distance axon growth of porcine striatal xenografts in rats. Exp Neurol 130:151–167

    Article  PubMed  CAS  Google Scholar 

  12. Isacson O, Deacon TW, Pakzaban P et al (1995) Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1:1189–1194

    Article  PubMed  CAS  Google Scholar 

  13. Isacson O, Deacon TW (1996) Specific axon guidance factors persist in the adult brain as demonstrated by pig neuroblasts transplanted to the rat. Neuroscience 75:827–837

    Article  PubMed  CAS  Google Scholar 

  14. Deacon T, Schumacher J, Dinsmore J et al (1997) Histological evidence of fetal pig ­neural cell survival after transplantation into a patient with Parkinson’s disease. Nat Med 3:350–353

    Article  PubMed  CAS  Google Scholar 

  15. Fink JS, Schumacher JM, Ellias SL et al (2000) Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant 9:273–278

    PubMed  CAS  Google Scholar 

  16. Schumacher JM, Ellias SA, Palmer EP et al (2000) Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 54:1042–1050

    Article  PubMed  CAS  Google Scholar 

  17. Krystkowiak P, Gaura V, Labalette et al (2007) Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS One 2:e166

    Article  PubMed  Google Scholar 

  18. Remy S, Canova C, Daguin-Nerriere et al (2001) Different mechanisms mediate the rejection of porcine neurons and endothelial cells transplanted into the rat brain. Xenotrans­plantation 8:136–148

    Article  PubMed  CAS  Google Scholar 

  19. Michel DC, Nerriere-Daguin V, Josien R et al (2006) Dendritic cell recruitment following xenografting of pig fetal mesencephalic cells into the rat brain. Exp Neurol 202:76–84

    Article  PubMed  CAS  Google Scholar 

  20. Melchior B, Nerriere-Daguin V, Degauque N et al (2005) Compartmentalization of TCR repertoire alteration during rejection of an intrabrain xenograft. Exp Neurol 192:373–383

    Article  PubMed  CAS  Google Scholar 

  21. Melchior B, Remy S, Nerriere-Daguin V et al (2002) Temporal analysis of cytokine gene expression during infiltration of porcine ­neuronal grafts implanted into the rat brain. J Neurosci Res 68:284–292

    Article  PubMed  CAS  Google Scholar 

  22. Duan WM, Westerman MA, Wong G, Low WC (2002) Rat nigral xenografts survive in the brain of MHC class II-, but not class I-deficient mice. Neuroscience 115:495–504

    Article  PubMed  CAS  Google Scholar 

  23. Michel-Monigadon D, Nerriere-Daguin V, Leveque X et al (2010) Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 89:816–823

    Article  PubMed  CAS  Google Scholar 

  24. Martin C, Plat M, Nerriere-Daguin V et al (2005) Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 14:373–384

    Article  PubMed  CAS  Google Scholar 

  25. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press Inc, London

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. P. Brachet for his steady support and contribution. We also gratefully acknowledge Dr. Vanhove, Dr. I. Anegon, and Pr. J-P Soulillou for their helpful advices and their encouragement. The work was supported by the “Association Française contre les Myopathies” (AFM), the “Fédération des Groupements de Parkinsoniens”, and Centaure. X. Lévêque was supported by fellowships from CECAP and Progreffe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Lévêque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lévêque, X., Nerrière-Daguin, V., Neveu, I., Naveilhan, P. (2012). Pig Neural Cells Derived from Foetal Mesencephalon as Cell Source for Intracerebral Xenotransplantation. In: Costa, C., Máñez, R. (eds) Xenotransplantation. Methods in Molecular Biology, vol 885. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-845-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-845-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-844-3

  • Online ISBN: 978-1-61779-845-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics