Skip to main content

Genotyping of Single Nucleotide Polymorphisms by 5′ Nuclease Allelic Discrimination

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 882))

Abstract

Real-time quantitative PCR is an efficient method for high-throughput genotyping of single nucleotide polymorphisms (SNPs). In this chapter, we describe the 5′ nuclease allelic discrimination assay for genotyping biallelic SNPs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21–24

    Article  PubMed  CAS  Google Scholar 

  2. Wang DG et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  PubMed  CAS  Google Scholar 

  3. Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144

    Article  PubMed  CAS  Google Scholar 

  4. The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  Google Scholar 

  5. Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nat Genet 27:234–236

    Article  PubMed  CAS  Google Scholar 

  6. Sherry ST et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  PubMed  CAS  Google Scholar 

  7. International HapMap 3 Consortium et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  Google Scholar 

  8. Genomes Project Consortium et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  9. Johnson GC et al (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237

    Article  PubMed  CAS  Google Scholar 

  10. Carlson CS et al (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120

    Article  PubMed  CAS  Google Scholar 

  11. Johnson AD, O’Donnell CJ (2009) An open access database of genome-wide association studies. BMC Med Genet 10:6–23

    Article  PubMed  Google Scholar 

  12. The MHC Sequencing Consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923

    Article  Google Scholar 

  13. Walsh EC et al (2001) An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 73:580–590

    Article  Google Scholar 

  14. Horton R et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899

    Article  PubMed  CAS  Google Scholar 

  15. Miretti MM et al (2005) A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 76:634–646

    Article  PubMed  CAS  Google Scholar 

  16. de Bakker PI et al (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38:1166–1172

    Article  PubMed  Google Scholar 

  17. Cree BA et al (2010) A major histocompatibility Class I locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1*15:01. PLoS One 5:e11296

    Article  PubMed  Google Scholar 

  18. Baschal EE et al (2009) Defining multiple common “completely” conserved major histocompatibility complex SNP haplotypes. Clin Immunol 132:203–214

    Article  PubMed  CAS  Google Scholar 

  19. International MHC and Autoimmunity Genetics Network et al (2009) Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA 106(44):18680–18685

    Article  Google Scholar 

  20. Valdes AM, Thomson G, Type 1 Diabetes Genetics Consortium (2009) Several loci in the HLA class III region are associated with T1D risk after adjusting for DRB1-DQB1. Diabetes Obes Metab 11(suppl 1):46–52

    Article  PubMed  Google Scholar 

  21. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–649

    Article  PubMed  CAS  Google Scholar 

  22. Saiki RK et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  23. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  24. Higuchi R et al (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11:1026–1030

    Article  CAS  Google Scholar 

  25. Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954–958; 960; 962

    Google Scholar 

  26. Piatek AS et al (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16:359–363

    Article  PubMed  CAS  Google Scholar 

  27. Marras SA, Kramer FR, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal 14:151–156

    Article  PubMed  CAS  Google Scholar 

  28. Mhlanga MM, Malmberg L (2001) Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 25:463–471

    Article  PubMed  CAS  Google Scholar 

  29. Holland PM et al (1991) Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280

    Article  PubMed  CAS  Google Scholar 

  30. Heid CA et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Effie W. Petersdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Malkki, M., Petersdorf, E.W. (2012). Genotyping of Single Nucleotide Polymorphisms by 5′ Nuclease Allelic Discrimination. In: Christiansen, F., Tait, B. (eds) Immunogenetics. Methods in Molecular Biology, vol 882. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-842-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-842-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-841-2

  • Online ISBN: 978-1-61779-842-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics