Skip to main content

Methods for Accurate Homology Modeling by Global Optimization

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

High accuracy protein modeling from its sequence information is an important step toward revealing the sequence–structure–function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, D., Sali, A. (2001) Protein structure prediction and structural genomics. Science 294 (5540), 93–96

    Article  PubMed  CAS  Google Scholar 

  2. Sali, A., Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815

    Article  PubMed  CAS  Google Scholar 

  3. Read, R.J., Chavali, G. (2007) Assessment of casp7 predictions in the high accuracy template-based modeling category. Proteins 69 Suppl 8, 27–37

    Article  PubMed  CAS  Google Scholar 

  4. Joo, K., Lee, J., Lee, S., et al. (2007) High accuracy template based modeling by global optimization. Proteins 69 Suppl 8, 83–89

    Article  PubMed  CAS  Google Scholar 

  5. Joo, K., Lee, J., Kim, I., et al. (2008) Multiple sequence alignment by conformational space annealing. Biophys. J. 95 (10), 4813–4819

    Article  PubMed  CAS  Google Scholar 

  6. Joo, K., Lee, J., Seo, J., et al. (2009) All-atom chain-building by optimizing modeller energy function using conformational space annealing. Proteins 75, 1010–1023

    Google Scholar 

  7. Altschul, S.F., Madden, T.L., Schaffer, A.A., et al. (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–402

    Article  PubMed  CAS  Google Scholar 

  8. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292 (2), 195–202

    Article  PubMed  CAS  Google Scholar 

  9. Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L. (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12 (9), 2001–2014

    Article  PubMed  CAS  Google Scholar 

  10. Dunbrack, R.L., Karplus, M. (1993) Backbone-dependent Rotamer Library for Proteins: Application to Side-chain prediction. J. Mol. Biol. 230, 543–574 (http://dunbrack.fccc.edu/bbdep/index.php)

    Article  PubMed  CAS  Google Scholar 

  11. Zhou, H., Zhou, Y. (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11(11), 2714–2726

    Article  PubMed  CAS  Google Scholar 

  12. Kabsch, W., Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 (12), 2577–2637

    Article  PubMed  CAS  Google Scholar 

  13. Lee, J., Scheraga, H.A., Rackovsky, S. (1997) New optimization method for conformational energy calculations on polypeptides: Conforma-tional space annealing. J. Comput. Chem. 18(9), 1222–1232

    Article  CAS  Google Scholar 

  14. Lee, J., Lee, I.H., Lee, J. (2003) Unbiased global optimization of lennard-jones clusters for n ≤ 201 using the conformational space annealing method. Phys. Rev. Lett. 91, 080201

    Google Scholar 

  15. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., et al. (1983) Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4 (2), 187–217

    Article  CAS  Google Scholar 

  16. Chang, C.C., Lin, C.J. (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  17. Fan, R.E., Chen, P.H., Lin, C.J. (2005) Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918

    Google Scholar 

  18. Wang, G., Dunbrack, R.L. (2005) Pisces: recent improvements to a pdb sequence culling server. Nucleic Acids Res. 33(Web Server issue)

    Google Scholar 

  19. Rose, G.D., Geselowitz, A.R., Lesser, G.J., et al. (1985) Hydrophobicity of amino acid residues in globular proteins. Science 229(4716), 834–838

    Article  PubMed  CAS  Google Scholar 

  20. Ginalski, K., Elofsson, A., Fischer, D., et al. (2003) A simple approach to improve protein structure predictions. Bioinformatics 19 (8), 1015–1018

    Article  PubMed  CAS  Google Scholar 

  21. Söding, J. (2005) Protein homology detection by hmm-hmm comparison. Bioinformatics 21(7), 951–960

    Article  PubMed  Google Scholar 

  22. Ishikawa, M., Toya, T., Hoshida, M., et al. (1993) Multiple sequence alignment by parallel simulated annealing. Comput. Appl. Biosci. 9 (3), 267–73

    PubMed  CAS  Google Scholar 

  23. Kim, J., Pramanik, S., Chung, M.J. (1994) Multiple sequence alignment using simulated annealing. Comput. Appl. Biosci. 10 (4), 419–26

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Creative Research Initiatives (Center for in silico Protein Science, 2009-0063610) of MEST/KOSEF. We thank KIAS Center for Advanced Computation for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyoung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Joo, K., Lee, J., Lee, J. (2011). Methods for Accurate Homology Modeling by Global Optimization. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics