Skip to main content

Crystallographic Analysis of Small Ribozymes and Riboswitches

  • Protocol
  • First Online:
Book cover Ribozymes

Abstract

Ribozymes and riboswitches are RNA motifs that accelerate biological reactions and regulate gene expression in response to metabolite recognition, respectively. These RNA molecules gain functionality via complex folding that cannot be predicted a priori, and thus requires high-resolution three-dimensional structure determination to locate key functional attributes. Herein, we present an overview of the methods used to determine small RNA structures with an emphasis on RNA preparation, crystallization, and structure refinement. We draw upon examples from our own research in the analysis of the leadzyme ribozyme, the hairpin ribozyme, a class I preQ1 riboswitch, and variants of a larger class II preQ1 riboswitch. The methods presented provide a guide for comparable investigations of noncoding RNA molecules including a 48-solution, “first choice” RNA crystal screen compiled from our prior successes with commercially available screens.

Geoffrey M. Lippa; Joseph A. Liberman; Jermaine L. Jenkins contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wedekind, J. E. (2011) in Met. Ions Life Sci.: Structural and Catalytic Roles of Metal Ions in RNA, eds. A. Sigel, H. Sigel, R. Sigel, Royal Society of Chemistry, London, pp. 299–345.

    Google Scholar 

  2. Wedekind, J. E. and McKay, D. B. (2003) Crystal structure of the leadzyme at 1.8Å resolution: metal ion binding and the implications for catalytic mechanism and allo site ion regulation. Biochemistry 42, 9554–9563.

    Article  PubMed  CAS  Google Scholar 

  3. Alam, S., Grum-Tokars, V., Krucinska, J., Kundracik, M. L. and Wedekind, J. E. (2005) Conformational heterogeneity at position U37 of an all-RNA hairpin ribozyme with implications for metal binding and the catalytic structure of the S-turn. Biochemistry 44, 14396–14408.

    Article  PubMed  CAS  Google Scholar 

  4. Spitale, R. C., Torelli, A. T., Krucinska, J., Bandarian, V. and Wedekind, J. E. (2009) The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain. J Biol Chem 284, 11012–11016.

    Article  PubMed  CAS  Google Scholar 

  5. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R. and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33, D121–124.

    Article  PubMed  CAS  Google Scholar 

  6. Ren, J., Rastegari, B., Condon, A. and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504.

    Article  PubMed  CAS  Google Scholar 

  7. Wedekind, J. E. and McKay, D. B. (2000) Purification, crystallization, and X-ray diffraction analysis of small ribozymes. Methods Enzymol. 317, 149–168.

    Article  PubMed  CAS  Google Scholar 

  8. Golden, B. L., Gooding, A. R., Podell, E. R. and Cech, T. R. (1996) X-ray crystallography of large RNAs: heavy-atom derivatives by RNA engineering. RNA 2, 1295–1305.

    PubMed  CAS  Google Scholar 

  9. Robertson, M. P. and Scott, W. G. (2008) A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives. Acta Crystallogr D Biol Crystallogr D64, 738–744.

    Article  PubMed  CAS  Google Scholar 

  10. Keel, A. Y., Rambo, R. P., Batey, R. T. and Kieft, J. S. (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772.

    Article  PubMed  CAS  Google Scholar 

  11. Beaucage, S. L. and Reese, C. B. (2009) Recent advances in the chemical synthesis of RNA. Curr Protoc Nucleic Acid Chem Chapter 2, Unit 2 16 11–31.

    Google Scholar 

  12. Torelli, A. T., Spitale, R. C., Krucinska, J. and Wedekind, J. E. (2008) Shared traits on the reaction coordinates of ribonuclease and an RNA enzyme. Biochem Biophys Res Commun 371, 154–158.

    Article  PubMed  CAS  Google Scholar 

  13. Spitale, R. C., Volpini, R., Mungillo, M. V., Krucinska, J., Cristalli, G. and Wedekind, J. E. (2009) Single-atom imino substitutions at A9 and A10 reveal distinct effects on the fold and function of the hairpin ribozyme catalytic core. Biochemistry 48, 7777–7779.

    Article  PubMed  CAS  Google Scholar 

  14. Sinha, N. D., Biernat, J., McManus, J. and Koster, H. (1984) Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res 12, 4539–4557.

    Article  PubMed  CAS  Google Scholar 

  15. Spitale, R. C. and Wedekind, J. E. (2009) Exploring ribozyme conformational changes with X-ray crystallography. Methods 49, 87–100.

    Article  PubMed  CAS  Google Scholar 

  16. Hartsel, S. A., Kitchen, D. E., Scaringe, S. A. and Marshall, W. S. (2005) RNA oligonucleotide synthesis via 5’-silyl-2’-orthoester chemistry. Methods Mol Biol 288, 33–50.

    PubMed  CAS  Google Scholar 

  17. Ferre-D’Amare, A. R., Zhou, K. and Doudna, J. A. (1998) A general module for RNA crystallization. J Mol Biol 279, 621–631.

    Article  PubMed  Google Scholar 

  18. Sherlin, L. D., Bullock, T. L., Nissan, T. A., Perona, J. J., Lariviere, F. J., Uhlenbeck, O. C. and Scaringe, S. A. (2001) Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA 7, 1671–1678.

    PubMed  CAS  Google Scholar 

  19. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  20. Garman, E. F. and Doublie, S. (2003) Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol 368, 188–216.

    Article  PubMed  CAS  Google Scholar 

  21. Garman, E. F. and Owen, R. L. (2006) Cryocoo-ling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62, 32–47.

    Article  PubMed  Google Scholar 

  22. Arndt, U. W. and Wonacott, A. J., The Rotation method in crystallography: Data collection from macromolecular crystals, Elsevier/North-Holland, New York, 1977.

    Google Scholar 

  23. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology 276, 307–326.

    Article  CAS  Google Scholar 

  24. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221.

    Article  PubMed  Google Scholar 

  25. Torelli, A. T., Krucinska, J. and Wedekind, J. E. (2007) A comparison of vanadate to a 2’-5’ linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA 13, 1052–1070.

    Article  PubMed  CAS  Google Scholar 

  26. Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12–21.

    Article  PubMed  Google Scholar 

  28. Kleywegt, G. J., Harris, M. R., Zou, J. Y., Taylor, T. C., Wahlby, A. and Jones, T. A. (2004) The Uppsala Electron-Density Server. Acta Crystallogr D Biol Crystallogr 60, 2240–2249.

    Article  PubMed  Google Scholar 

  29. Ferre-D’Amare, A. R. and Doudna, J. A. (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J Mol Biol 295, 541–556.

    Article  PubMed  Google Scholar 

  30. Ferre-D’Amare, A. R. (2010) Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods 52, 159–167.

    Article  PubMed  Google Scholar 

  31. MacElrevey, C., Spitale, R. C., Krucinska, J. and Wedekind, J. E. (2007) A posteriori design of crystal contacts to improve the X-ray diffraction properties of a small RNA enzyme. Acta Crystallogr. D Biol. Crystallogr. 63, 812–825.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Profs. Harold C. Smith and Clara L. Kielkopf for sharing their expertise on RNA. We thank Jason Salter for assistance with diffraction analysis, as well as the staff of MacCHESS and SSRL for help with X-ray data collection. This work was supported in part by NIH grants GM063162 and RR026501 to J.E.W. MacCHESS is supported by NSF award DMR-0225180 and NIH/NCRR award RR01646SSRL. SSRL is operated by Stanford on behalf of the U.S. DOE. The SSRL Structural Molecular Biology Program is supported by the DOE, and by NIH/NCRR and NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Wedekind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lippa, G.M., Liberman, J.A., Jenkins, J.L., Krucinska, J., Salim, M., Wedekind, J.E. (2012). Crystallographic Analysis of Small Ribozymes and Riboswitches. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics