Skip to main content

Genetic Manipulations Using Cre and Mutant LoxP Sites

  • Protocol
  • First Online:
Book cover Controlled Genetic Manipulations

Part of the book series: Neuromethods ((NM,volume 65))

Abstract

The bacteriophage P1-derived Cre/lox recombination system has been extensively used to engineer the genome of cultured cells and experimental animals. Cre recombinase recognizes the loxP site, which is composed of two 13-bp inverted repeats and an 8-bp spacer region, and mediates both intramolecular (excisive) and intermolecular (integrative) recombination between two loxP sites. The excision reaction is efficient and can be used in conditional knockout strategies. On the other hand, integrative recombination is inefficient because the integrated DNA retains loxP sites at both ends and is easily excised again if the Cre recombinase is still present. However, integrative recombination is expected to be a powerful tool for genome engineering in mouse embryonic stem (ES) cells because it allows precise and repeated knock-in of any DNA into lox sites placed in the genome. To promote integrative recombination, two kinds of mutant lox systems have been developed and successfully used in ES cells to produce exchangeable (multipurpose) alleles. In this chapter, we describe a Cre/mutant lox system for integrative recombination, and we present an application of this system to gene targeting. By incorporating mutant lox sites into gene targeting vectors, we can first produce a null allele. Subsequently, any gene of interest, including the Cre recombinase gene itself, fluorescent genes, luciferase genes, mutated cDNAs, and human cDNAs, can be inserted and expressed under the endogenous promoter of the targeted gene. By combining other recombination systems, such as Flp/FRT, we can also convert null alleles into conditional alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26: 99–109

    Article  PubMed  CAS  Google Scholar 

  2. Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  3. Voziyanov Y, Pathania S, Jayaram M (1999) A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res 27:930–941

    Article  PubMed  CAS  Google Scholar 

  4. Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402

    Article  PubMed  CAS  Google Scholar 

  5. Hoess RH, Wierzbicki A, Abremski K (1986) The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 14:2287–2300

    Article  PubMed  CAS  Google Scholar 

  6. Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89:7905–7909

    Article  PubMed  CAS  Google Scholar 

  7. Albert H, Dale EC, Lee E et al. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  8. Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed  CAS  Google Scholar 

  9. Thomson JG, Rucker EB, 3rd, Piedrahita JA (2003) Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis 36:162–167

    Article  PubMed  CAS  Google Scholar 

  10. Araki K, Okada Y, Araki M et al. Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol 10:29

    Google Scholar 

  11. Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65

    Article  PubMed  CAS  Google Scholar 

  12. Langer SJ, Ghafoori AP, Byrd M et al. (2002) A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res 30:3067–3077

    Article  PubMed  CAS  Google Scholar 

  13. Bouhassira EE, Westerman K, Leboulch P (1997) Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90:3332–3344

    PubMed  CAS  Google Scholar 

  14. Bethke B, Sauer B (1997) Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res 25:2828–2834

    Article  PubMed  CAS  Google Scholar 

  15. Kolb AF (2001) Selection-marker-free modification of the murine beta-casein gene using a lox2272 (correction of lox2722) site. Anal Biochem 290:260–271

    Article  PubMed  CAS  Google Scholar 

  16. Osipovich AB, Singh A, Ruley HE (2005) Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment. Genome Res 15:428–435

    Article  PubMed  CAS  Google Scholar 

  17. Araki K, Araki M, Yamamura K (2002) Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res 30:e103

    Article  PubMed  Google Scholar 

  18. Araki K, Imaizumi T, Okuyama K et al. (1997) Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem (Tokyo) 122:977–982

    Article  CAS  Google Scholar 

  19. Hayashi S, Tenzen T, McMahon AP (2003) Maternal inheritance of Cre activity in a Sox2Cre deleter strain. Genesis 37:51–53

    Article  PubMed  CAS  Google Scholar 

  20. Taniwaki T, Haruna K, Nakamura H et al. (2005) Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette. Dev Growth Differ 47:163–172

    Article  PubMed  CAS  Google Scholar 

  21. Miura K, Yoshinobu K, Imaizumi T et al. (2006) Impaired expression of importin/karyopherin b1 leads to post-implantation lethality. Biochem Biophys Res Commun 341:132–138

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez CI, Buchholz F, Galloway J et al. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  23. Li Z, Zhao G, Shen J et al. (2010) Enhanced expression of human cDNA by phosphoglycerate kinase promoter-puromycin cassette in the mouse transthyretin locus. Transgenic Res 20:191–200

    Google Scholar 

  24. Araki K, Araki M, Yamamura K (2006) Negative selection with the Diphtheria toxin A fragment gene improves frequency of Cre-mediated cassette exchange in ES cells. J Biochem 140:793–798

    Article  PubMed  CAS  Google Scholar 

  25. Zhao G, Li Z, Araki K et al. (2008) Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus. Genes Cells 13:1257–1268

    Article  PubMed  CAS  Google Scholar 

  26. Araki K, Imaizumi T, Sekimoto T et al. (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol 45:737–750

    CAS  Google Scholar 

  27. Liddle CN, Reid WA, Kennedy JS et al. (1985) Immunolocalization of prealbumin: distribution in normal human tissue. J Pathol 146:107–113

    Article  PubMed  Google Scholar 

  28. Herbert J, Wilcox JN, Pham KT et al. (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. The 1986S. Weir Mitchell award. Neurology 36:900–911

    Article  PubMed  CAS  Google Scholar 

  29. Cavallaro T, Martone RL, Dwork AJ et al. (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthalmol Vis Sci 31:497–501

    PubMed  CAS  Google Scholar 

  30. Vranckx R, Savu L, Maya M et al. (1990) Characterization of a major development-regulated serum thyroxine-binding globulin in the euthyroid mouse. Biochem J 271:373–379

    PubMed  CAS  Google Scholar 

  31. Tsuzuki T, Mita S, Maeda S et al. (1985) Structure of the human prealbumin gene. J Biol Chem 260:12224–12227

    PubMed  CAS  Google Scholar 

  32. Wakasugi S, Maeda S, Shimada K (1986) Structure and expression of the mouse prealbumin gene. J Biochem 100:49–58

    PubMed  CAS  Google Scholar 

  33. McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6:3357–3367

    PubMed  CAS  Google Scholar 

  34. Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci USA 93:6191–6196

    Article  PubMed  CAS  Google Scholar 

  35. Buchholz F, Ringrose L, Angrand PO et al. (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  PubMed  CAS  Google Scholar 

  36. Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  PubMed  CAS  Google Scholar 

  37. Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    Article  PubMed  Google Scholar 

  38. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095

    Article  PubMed  CAS  Google Scholar 

  39. Anastassiadis K, Fu J, Patsch C et al. (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Yamamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Araki, K., Yamamura, Ki. (2012). Genetic Manipulations Using Cre and Mutant LoxP Sites. In: Morozov, A. (eds) Controlled Genetic Manipulations. Neuromethods, vol 65. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-533-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-533-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-532-9

  • Online ISBN: 978-1-61779-533-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics