Skip to main content

Modulatory Effects of Proteoglycans on Proteinase Activities

  • Protocol
  • First Online:
Book cover Proteoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 836))

Abstract

Proteoglycans (PGs), composed of a core protein and one or more covalently attached sulfated glycosaminoglycan (GAG) chains, interact with a wide range of bioactive molecules, such as growth factors and chemokines, to regulate cell behaviors in normal and pathological processes. Additionally, PGs, through their compositional diversity, play a broad variety of roles as modulators of proteinase activities. Interactions of proteinases with other molecules on the plasma membrane anchor and activate them at a specific location on the cell surface. These interactions with macromolecules other than their own protein substrates or inhibitors result in changes in their activity and/or may have important biological effects. Thus, GAG chains induce conformational changes upon their binding to peptides or proteins. This behavior may be related to the ability of GAGs to act as modulators for some proteins (1) by acting as crucial structural elements by the control of proteinase activities, (2) by increasing the protein stability, (3) by permitting some binding to occur, exposing binding regions on the target protein, or (4) by acting as coreceptors for some inhibitors, playing important roles for the acceleration of proteinase inhibition. Understanding the modulatory effects exerted by PGs on proteinase activities is expected to lead to new insights in the understanding of some molecular systems present in pathological states, providing new targets for drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamoureux, F., Baud’huin, M., Duplomb L, Heymann, D., and Rédini, F. (2007) Proteo-glycans: key partners in bone cell biology. BioEssays. 29, 758–771.

    Article  PubMed  CAS  Google Scholar 

  2. Ruiz Velasco, C., Colliec-Jouault, S., Rédini, F., Heymann, D., and Padrines, M. (2010) Proteoglycans on bone tumor development. Drug Discov. Today. 15, 553–560.

    Article  Google Scholar 

  3. Hardingham, T. E. and Fosang, A. J. (1992). Proteoglycans: many forms and many functions. FASEB J. 6, 861–870.

    PubMed  CAS  Google Scholar 

  4. Bernfield, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 68, 729–777.

    Article  PubMed  CAS  Google Scholar 

  5. Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (2004) The Handbook of Proteolytic Enzymes. 2nd ed. Barrett AJ, Rawlings ND, Woessner JF (Eds), Academic Press, Cambridge, UK.

    Google Scholar 

  6. Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004) Evolutionary families of peptidase inhibitors. Biochem. J. 378, 705–716.

    Article  PubMed  CAS  Google Scholar 

  7. Owen, C. A. (2008) Leukocyte cell surface proteinases : regulation of expression, functions, and mechanisms of surface localization. Int. J. Biochem. Cell Biol. 40, 1246–1272.

    Article  PubMed  CAS  Google Scholar 

  8. Stefanidakis, M. and Koivunen, E. (2006) Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood. 108, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  9. Mohammed, F. F., Smookler, D. S., and Khokha, R. (2003) Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis. 62, ii43.

    Google Scholar 

  10. Georges, S., Ruiz Velasco, C., Trichet, V., Fortun, Y., Heymann, D., and Padrines, M. (2009) Proteases and bone remodeling. Cytokine Growth Factor Review 20, 29–41.

    Article  CAS  Google Scholar 

  11. Brooks, P. C., Strömblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693.

    Article  PubMed  CAS  Google Scholar 

  12. Redondo-Muñoz, J., Ugarte-Berzal, E., García-Marco, J. A., del Cerro, M. H., Van den Steen, P. E., Opdenakker, G., et al. (2008) α4β1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood. 112, 169–178.

    Article  PubMed  Google Scholar 

  13. Dumin, J. A., Dickeson, S. K., Stricker, T. P., Bhattacharyya-Pakrasi, M., Roby, J. D., Santoro, S. A., et al. (2001) Pro-collagenase-1 (matrix metalloproteinase-1) binds the α2β1 integrin upon release from keratinocytes migrating on type I collagen. J. Biol. Chem. 276, 29368–29374.

    Article  PubMed  CAS  Google Scholar 

  14. Knauper, V., Will, H., Lopez-Otin, C., Smith, B., Atkinson, S. J., Stanton, H., et al. (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem. 271, 17124–17131.

    Article  PubMed  CAS  Google Scholar 

  15. Nagase, H. (1998) Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res. 8, 179–186.

    PubMed  CAS  Google Scholar 

  16. Yu, W. H. and Woessner, J. F. (2000) Heapran sulphate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J. Biol. Chem. 275, 4183–4191.

    Article  PubMed  CAS  Google Scholar 

  17. Nabeshima, K., Inoue, T., Shimao, Y., and Sameshima, T. (2002) Matrix metalloproteinases in tumor invasion : role for cell migration. Pathol. Int. 4, 255–264.

    Article  Google Scholar 

  18. Ryu, H. Y., Lee, J., Yang, S., Par, H., Cho, S., Jung, K. C., et al. (2009) Syndecan-2 Functions as a Docking Receptor for Pro-matrix Metalloproteinase-7 in Human Colon Cancer Cells. J. Biol. Chem. 284, 35692–35701.

    Article  PubMed  CAS  Google Scholar 

  19. Bartolazzi, A., Nocks, A., Aruffo, A., Spring, F., and Stamenkovic, I. (1996) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. J. Cell Biol. 132, 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, W. H., Woessner, J. F., McNeish, J. D., and Stamenkovic, I. (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodelling. Genes Dev. 16, 307–323.

    Article  PubMed  CAS  Google Scholar 

  21. Yu, Q. and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176.

    PubMed  Google Scholar 

  22. Owen, C. A., Hu, Z., Lopez-Otin, C., and Shapiro, S. D. (2004) Membrane-bound matrix metalloproteinase-8 activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J. Immunol. 172, 7791–7803.

    PubMed  CAS  Google Scholar 

  23. Davis, G. E., Pintar Allen, K. A., Salazar, R., and Maxwell, S. A. (2001) Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci. 114, 917–930.

    PubMed  CAS  Google Scholar 

  24. Crabbe, T., Ioannou, C., and Docherty, A. J. (1993) Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur J Biochem. 218, 431–438.

    Article  PubMed  CAS  Google Scholar 

  25. Sørensen, H. P., Vives, R. R., Manetopoulos, C., Albrechtsen, R., Lydolph, M. C., Jacobsen, J., et al. (2008) Heparan sulfate regulates ADAM12 through a molecular switch mechanism. J Biol Chem. 283, 31920–31932.

    Article  PubMed  Google Scholar 

  26. Iida, J., Wilhelmson, K. L., Ng, J., Lee, P., Morrison, C., Tam, E., et al. (2007) Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A) Biochem. J. 403, 553–563.

    CAS  Google Scholar 

  27. Naito, S., Shiomi, T., Okada, A., Kimura, T., Chijiiwa, M., Fujita, Y., et al. (2007) Expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic cartilage. Pathol Int. 57, 703–711.

    Article  PubMed  CAS  Google Scholar 

  28. Mort, J. S., Flannery, C. R., Makkerh, J., Krupa, J. C., and Lee, E. R. (2003) Use of antineoepitope antibodies for the analysis of degradative events in cartilage and the molecular basis for neoepitope specificity. Biochem. Soc. Symp. 70, 107–114.

    PubMed  CAS  Google Scholar 

  29. Stanton, H., Rogerson, F. M., East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., et al. (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652.

    Article  PubMed  CAS  Google Scholar 

  30. Gendron, C., Kashiwagi, M., Lim, N. H., Enghild, J. J., Thøgersen, I. B., Hughes, C., et al. (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J. Biol.Chem. 282, 18294–18306.

    Article  PubMed  CAS  Google Scholar 

  31. Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) ADAMTS4 (Aggrecanase-1) Activation on the Cell Surface Involves C-terminal Cleavage by Glycosyl-phosphatidyl Inositol-anchored Membrane Type 4-Matrix Metalloproteinase and Binding of the Activated Proteinase to Chondroitin Sulfate and Heparan Sulfate on Syndecan-1. J. Biol. Chem. 279, 10042–10051.

    Article  PubMed  CAS  Google Scholar 

  32. Echtermeyer, F., Bertrand, J., Dreier, R., Meinecke, I., Neugebauer, K., Fuerst, M., et al. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med. 15, 1072–1076.

    Article  PubMed  CAS  Google Scholar 

  33. Munesue, S., Yoshitomi, Y., Kusano, Y., Koyama, Y., Nishiyama, A., Nakanishi, H., et al. (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem. 282, 28164–28174.

    Article  PubMed  CAS  Google Scholar 

  34. Nakada, M., Yamada, A., Takino, T., Miyamori, H., Takahashi, T., Yamashita, J., et al. (2001) Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-Tes. Cancer Res. 61, 8896–8902.

    CAS  Google Scholar 

  35. Nakada, M., Miyamori, H., Yamashita, J., and Sato, H. (2003) Testican 2 abrogates inhibition of membrane-type matrix metalloproteinases by other testican family proteins. Cancer Res. 63, 3364–3369.

    PubMed  CAS  Google Scholar 

  36. Schmitt, M., Jaenicke, F., and Graeff, H. (1992) Tumor-associated proteases. Fibrinol. Proteol. 6, 3–26.

    CAS  Google Scholar 

  37. Cavallo-Medved, D. and Sloane, B.F. (2003) Cell surface cathepsin B: understanding its functional significance. Curr. Top. Dev. Biol. 54, 313–341.

    Article  PubMed  CAS  Google Scholar 

  38. Podobnik, M., Kuhelj, R., Turk, V., and Turk, D. (1997) Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J. Mol. Biol. 271, 774–788.

    Article  PubMed  CAS  Google Scholar 

  39. Turk, V., Turk, B., and Turk, D. (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629–4633.

    Article  PubMed  CAS  Google Scholar 

  40. Turk, B., Turk, D., and Turk, V. (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 1477, 98–111.

    Article  PubMed  CAS  Google Scholar 

  41. Pungercar, J. R., Caglic, D., Sajid, M., Dolinar, M., Vasiljeva, O., Pozgan, U., et al. (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J. 276, 660–668.

    Article  PubMed  CAS  Google Scholar 

  42. Caglic, D., Pungercar, J. R., Pejler, G., Turk, V., and Turk, B. (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J. Biol. Chem. 282, 33076–33085.

    Article  PubMed  CAS  Google Scholar 

  43. Beckman, M., Freeman, C., Parish, C. R., and Small, D. H. (2009) Activation of cathepsin D by glycosaminoglycans. FEBS J. 276, 7343–7352.

    Article  PubMed  CAS  Google Scholar 

  44. Klaver, D. W., Wilce, M. C. J., Gasperini, R., Freeman, C., Juliano, J. P., Parish, C., et al. (2010) Glycosaminoglycan-induced activation of the β-secretase (BACE-1) of Alzheimer’s disease. J Neurochem. 112, 1552–1561.

    Article  PubMed  CAS  Google Scholar 

  45. Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999) Purification and cloning of amyloid precursor protein beta secretase from human brain. Nature 402, 537–540.

    Article  PubMed  CAS  Google Scholar 

  46. Scholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W., and Turnbull, J. E. (2003) Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s beta-secretase. J. Cell Biol. 163, 97–107.

    Article  PubMed  CAS  Google Scholar 

  47. Hogg, P. J. and Jackson, C. M. (1990) Heparin promotes the binding of thrombin to fibrin polymer. Quantitative characterization of a thrombin-fibrin polymer-heparin ternary complex. J. Biol. Chem. 265, 241–247.

    PubMed  CAS  Google Scholar 

  48. Stein, P. L., van Zonneveld, A. J., Pannekoek, H., and Strickland, S. (1989) Structural domain of tissue-type plasminogen activator that confer stimulation by heparin. J. Biol. Chem. 264, 15441–15444.

    PubMed  CAS  Google Scholar 

  49. Frommherz, K. J., Faller, B., and Bieth, J. G. (1991) Heparin strongly decreases the rate of inhibition of neutrophil elastase by α1-proteinase inhibitor. J. Biol. Chem. 266, 15356–15362.

    PubMed  CAS  Google Scholar 

  50. Fryer, A., Huang, Y. C., Rao, G., Jacoby, D., Mancilla, E., Whorton, R., et al. (1997) Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J. Pharmacol. Exp.Ther. 282, 208–219.

    PubMed  CAS  Google Scholar 

  51. Spencer, J. L., Stone, P. J., and Nugent, N. A. (2006) New Insights into the Inhibition of Human Neutrophil Elastase by Heparin. Biochemistry 45, 9104–9120.

    Article  PubMed  CAS  Google Scholar 

  52. Moreau, T., Baranger, K., Dadé, S., Dallet-Choisy, S., Guyot, N., and Zani, M. L. (2008) Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 90, 284–295.

    Article  PubMed  CAS  Google Scholar 

  53. Cadène, M., Boudier, C., Marcillac, G. D., and Bieth, J. G. (1995) Influence of low molecular mass heparin on the kinetics of neutrophil elastase inhibition by mucus proteinase inhibitor. J. Biol.Chem. 270, 13204–13209.

    Article  PubMed  Google Scholar 

  54. Ermolieff, J., Duranton, J., Petitou, M., and Bieth, J. (1998) Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem. J. 330, 1369–1374.

    PubMed  CAS  Google Scholar 

  55. Walter, M., Plotnick, M., and Schechter, N. M. (1996) Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Arch. Biochem. Biophys. 327, 81–88

    Article  PubMed  CAS  Google Scholar 

  56. Stein, P. E. and Carrell, R. W. (1995) What do dysfunctional serpins tell us about molecular mobility and disease? Nat. Struct. Biol. 2, 96–113.

    Article  PubMed  CAS  Google Scholar 

  57. Stratikos, E. and Gettins, P. G. W. (1999) Formation of the covalent serpine proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into β-sheet A. Proc. Natl. Acad. Sci. USA. 96, 4808–4813.

    Article  PubMed  CAS  Google Scholar 

  58. Gettins, P. G. W. (2002) Serpin structure, mechanism and function. Chem. Rev. 102, 4751–4803.

    Article  PubMed  CAS  Google Scholar 

  59. Desai, U. R., Petitou, M., Björk, I., and Olson, S. T. (1998) Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites. Biochemistry 37, 13033–13041.

    Article  PubMed  CAS  Google Scholar 

  60. Gupta, V. K. and Gowda, L.R. (2008) Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Biochimie 90, 749–761.

    Article  PubMed  CAS  Google Scholar 

  61. Higgins, W. J., Fox, D. M., Kowalski, P.S., Nielsen, J. E., and Worrall, D. M. (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J. Biol. Chem. 285, 3722–3729.

    Article  PubMed  CAS  Google Scholar 

  62. Murphy, G., Knäuper, V., Lee, M. H., Amour, A., Worley, J. R., Hutton, M., et al. (2003) Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail. Biochem. Soc. Symp. 70, 201–212.

    Google Scholar 

  63. Amour, A., Slocombe, P. M., Webster, A., Butler, M., Knight, C. G., Smith, B. J., et al. (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 39–44.

    Article  PubMed  CAS  Google Scholar 

  64. Smith, M. R., Kung, H. F., Durum, S. K., Colburn, N. H., and Sun, Y. (1997) TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 9, 770–780.

    Article  PubMed  CAS  Google Scholar 

  65. Lee, M. H., Atkinson, S., and Murphy, G. (2007) Identification of the extracellular matrix (ECM) binding motifs of tissue inhibitor of metalloproteinases (TIMP)-3 and effective transfer to TIMP-1. J. Biol. Chem. 282, 6887–6898.

    Article  PubMed  CAS  Google Scholar 

  66. Butler, G. S., Apte, S. S., Willenbrock, F., and Murphy, G. (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J. Biol. Chem. 274, 10846–10851.

    Article  PubMed  CAS  Google Scholar 

  67. Turk, B., Bieth, J. G., Björk, I., Dolenc, I., Turk, D., Cimerman, N., et al. (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. Hoppe Seyler 376, 225–230.

    Article  PubMed  CAS  Google Scholar 

  68. Yan, S. and Sloane, B. F. (2004) Molecular regulation of human cathepsin B: implication in pathologies. Biol. Chem. 384, 845–854.

    Article  Google Scholar 

  69. Sloane, B. F., Rozhin, J., Lah, T. T., Day, N.A., Buck, M., Ryan, R. E., et al. (1988) Tumor cathepsin B and its endogenous inhibitors in metastasis. Adv. Exp. Med. Biol. 233, 259–268

    PubMed  CAS  Google Scholar 

  70. Almeida, P. C., Nantes, I. L., Chagas, J. R., Rizzi, C. C., Faljoni-Alario, A., Carmona, E., et al. (2001) Cathepsin B activity regulation heparin-like glycosaminoglycans protect human cathepsin B from alkaline ph-induced inactivation. J. Biol. Chem. 276, 944–951.

    Article  PubMed  CAS  Google Scholar 

  71. Almeida, P. C., Nantes, I. L., Rizzi, C. C. A., Júdice, W. A., Chagas, J. R., Juliano, L., et al. (1999) Cysteine proteinase activity regulation. A possible role of heparin and heparin-like glycosaminoglycans. J. Biol. Chem. 274, 30433–30438.

    Article  PubMed  CAS  Google Scholar 

  72. Littlewood-Evans, A., Kokubo, T., Ishibashi, O., Inaoka, T., Wlodarski, B., Gallagher, J. A., et al. (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20, 81–86.

    Article  PubMed  CAS  Google Scholar 

  73. Li, Z., Hou, W. S., Escalante-Torres, C. R., Geld, B. D., and Bromme, D. (2002) Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem 277, 28669–28676.

    Article  PubMed  CAS  Google Scholar 

  74. Li, Z., Yasuda, Y., Li, W., Bogyo, M., Katz, N., Gordon, R. E., et al. (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279, 5470–5479.

    Article  PubMed  CAS  Google Scholar 

  75. Novinec, M., Kovacic, L., Lenarcic, B., and Baici, A. (2010) Conformational flexibility and allosteric regulation of cathepsin K. Biochem. J. 429, 379–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Département Loire Atlantique (Program entitled Atlanthèse). Steven GEORGES received a fellowship from the Département Loire Atlantique. Thanks to Verena STRESING for proof reading and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Padrines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Georges, S., Heymann, D., Padrines, M. (2012). Modulatory Effects of Proteoglycans on Proteinase Activities. In: Rédini, F. (eds) Proteoglycans. Methods in Molecular Biology, vol 836. Humana Press. https://doi.org/10.1007/978-1-61779-498-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-498-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-497-1

  • Online ISBN: 978-1-61779-498-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics