Skip to main content

Recombinant Protein Production in Yeasts

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

Recombinant protein production is a multibillion-dollar market. The development of a new product begins with the choice of a production host. While one single perfect host for every protein does not exist, several expression systems ranging from bacterial hosts to mammalian cells have been established. Among them, yeast cell factories combine the advantages of being single cells, such as fast growth and easy genetic manipulation, as well as eukaryotic features including a secretory pathway leading to correct protein processing and post-translational modifications. In this respect, especially the engineering of yeast glycosylation to produce glycoproteins of human-like glycan structures is of great interest. Additionally, different attempts of cellular engineering as well as the design of different production processes that are leading to improved productivities are presented. With the advent of cheaper next-generation sequencing techniques, systems biotechnology approaches focusing on genome scale analyses will advance and accelerate yeast cell factories and thus recombinant protein production processes in the near future. In this review we summarize advantages and limitations of the main and most promising yeast hosts, including Saccharomyces cerevisiae, Pichia pastoris, and Hansenula polymorpha as those presently used in large scale production of heterologous proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goodman, M. (2009) Market watch: Sales of biologics to show robust growth through to 2013. Nat. Rev. Drug Discov. 8, 837.

    Article  PubMed  CAS  Google Scholar 

  2. Macdonald, G. (2009) Bio drugs to dominate top ten list by 2014. In-Pharma Technologist. http://www.in-pharmatechnologist.com/Industry-Drivers/Bio-drugs-to-dominate-top-ten-list-by-2014. Accessed 15 October 2010.

  3. Freedonia Group (2009) World Enzymes to 2013. The Freedonia Group, Inc.

    Google Scholar 

  4. Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J., Vázquez, E., and Villaverde, A. (2009) Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 8, 17.

    Article  PubMed  CAS  Google Scholar 

  5. Panda, A.K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85, 43–93.

    PubMed  CAS  Google Scholar 

  6. Tripathi, N.K., Sathyaseelan, K., Jana, A.M., and Rao, P.V.L. (2009) High yield production of heterologous proteins with Escherichia coli. Defence Science Journal 59, 137–146.

    CAS  Google Scholar 

  7. Ni, Y., and Chen, R. (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31, 1661–1670.

    Article  PubMed  CAS  Google Scholar 

  8. Pandhal, J., and Wright, P.C. (2010) N-Linked glycoengineering for human therapeutic proteins in bacteria. Biotechnol. Lett. 32, 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  9. Hitzeman, R.A., Hagie, F.E., Levine, H.L., Goeddel, D.V., Ammerer, G., and Hall, B.D. (1981) Expression of a human gene for interferon in yeast. Nature 293, 717–722.

    Article  PubMed  CAS  Google Scholar 

  10. Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43, 75–102.

    PubMed  CAS  Google Scholar 

  11. Romanos, M.A., Scorer, C.A., and Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.

    Article  PubMed  CAS  Google Scholar 

  12. Porro, D., Venturini, M., Brambilla, L., Alberghina, L., and Vanoni, M. (2000) Relating growth dynamics and glucoamylase excretion of individual Saccharomyces cerevisiae cells. J. Microbiol. Methods 42, 49–55.

    Article  PubMed  CAS  Google Scholar 

  13. Sudbery, P.E., Gleeson, M.A., Veale, R.A., Ledeboer, A.M., and Zoetmulder, M.C. (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem. Soc. Trans. 16, 1081–1083.

    PubMed  CAS  Google Scholar 

  14. van Dijk, R., Faber, K.N., Kiel, J.A., Veenhuis, M., and van der Klei, I. (2000) The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme Microb. Technol. 26, 793–800.

    Article  PubMed  Google Scholar 

  15. Gellissen, G., Kunze, G., Gaillardin, C., Cregg, J.M., Berardi, E., Veenhuis, M., and van der Klei, I. (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res. 5, 1079–1096.

    Article  PubMed  CAS  Google Scholar 

  16. Cregg, J.M., Cereghino, J.L., Shi, J., and Higgins, D.R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.

    Article  PubMed  CAS  Google Scholar 

  17. Macauley-Patrick, S., Fazenda, M.L., McNeil, B., and Harvey, L.M. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249–270.

    Article  PubMed  CAS  Google Scholar 

  18. van Ooyen, A., Dekker, P., Huang, M., Olsthoorn, M., Jacobs, D., Colussi, P., and Taron, C. (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res. 6, 381–392.

    Article  PubMed  CAS  Google Scholar 

  19. Fonseca, G.G., Heinzle, E., Wittmann, C., and Gombert, A.K. (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79, 339–354.

    Article  PubMed  CAS  Google Scholar 

  20. Madzak, C., Gaillardin, C., and Beckerich, J.M. (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J. Biotechnol. 109, 63–81.

    Article  PubMed  CAS  Google Scholar 

  21. Boer, E., Piontek, M., and Kunze, G. (2009) Xplor 2--an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl. Microbiol. Biotechnol. 84, 583–594.

    Article  PubMed  CAS  Google Scholar 

  22. Stockmann, C., Scheidle, M., Dittrich, B., et al. (2009) Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb. Cell Fact. 8: 22.

    Article  PubMed  CAS  Google Scholar 

  23. Raymond, C.K., Bukowski, T., Holderman, S.D., Ching, A.F., Vanaja, E., and Stamm, M.R. (1998) Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast 14, 11–23.

    Article  PubMed  CAS  Google Scholar 

  24. Takegawa, K., Tohda, H., Sasaki, M., et al. (2009) Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol. Appl. Biochem. 53, 227–235.

    Article  PubMed  CAS  Google Scholar 

  25. Dato, L., Branduardi, P., Passolunghi, S., Cattaneo, D., Riboldi, L., Frascotti, G., Valli, M., and Porro, D. (2010) Advances in the development of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res. 10, 894–908.

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa, Y., Tatsumi, H., Murakami, S., Ishida, Y., Murakami, K., Masaki, A., Kawabe, H., Arimura, H., Nakano, E., Motai, H., et al. 1990. Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54, 2521–2529.

    Article  PubMed  CAS  Google Scholar 

  27. Den Haan, R. and Van Zyl, W.H. (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 57, 521–527.

    Article  Google Scholar 

  28. Buckholz, R.G., and Gleeson, M.A. (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9, 1067–1072.

    Article  CAS  Google Scholar 

  29. Gellissen, G., and Hollenberg, C.P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review. Gene 190, 87–97.

    Article  PubMed  CAS  Google Scholar 

  30. Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F.J., Perez-Campo, F.M., Garcia, S., Herrero, A.B., San Vicente, A., Cabello, J., Prado, M., Iglesias, F.J., Choupina, A., Burguillo, F.J., Fernandez-Lago, L., and Lopez, M.C. (1998) Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.

    PubMed  CAS  Google Scholar 

  31. Cereghino, G.P., and Cregg, J.M. (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr. Opin. Biotechnol. 10, 422–427.

    Article  PubMed  CAS  Google Scholar 

  32. Boer, E., Steinborn, G., Kunze, G., and Gellissen, G. (2007) Yeast expression platforms. Appl. Microbiol. Biotechnol. 77, 513–523.

    Article  PubMed  CAS  Google Scholar 

  33. Rocha, S.N., Abrahao-Neto, J., Cerdan, M.E., Gonzalez-Siso, M.I. and Gombert, A.K. (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb. Cell Fact. 9: 4.

    Article  PubMed  CAS  Google Scholar 

  34. Kurtzman, C.P. (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.

    Article  CAS  Google Scholar 

  35. Makdesi, A.K., and Beuchat, L.R. (1996) Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccha-romyces bailii. Int. J. Food Microbiol. 33, 169–181.

    Article  PubMed  CAS  Google Scholar 

  36. Sousa, M.J., Miranda, L., Corte-Real, M., and Leao, C. (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62, 3152–3157.

    PubMed  CAS  Google Scholar 

  37. Wegener, G.H., and Harder, W. (1987) Methylotrophic yeasts–1986. Antonie van Leeuwenhoek 53, 29–36.

    Article  Google Scholar 

  38. Thill, G., Davis, G., Stillman, C., et al. (1987) The methylotrophic yeast Pichia pastoris as a host for heterologous protein production. In: Microbial growth on C1 compounds. Eds: (van Verseveld, H., Duine, W., Nijhoff, J.A., eds.) Dordrecht, pp. 289–296.

    Google Scholar 

  39. Yurimoto, H. (2009) Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii. Biosci. Biotechnol. Biochem. 73, 793–800.

    Article  PubMed  CAS  Google Scholar 

  40. Yurimoto, H., and Sakai, Y. (2009) Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol. Appl. Biochem. 53, 85–92.

    Article  PubMed  CAS  Google Scholar 

  41. Kuroda, K., Kobayashi, K., Tsumura, H., Komeda, T., Chiba, Y., and Jigami, Y. (2006) Production of Man5GlcNAc2-type sugar chain by the methylotrophic yeast Ogataea minuta. FEMS Yeast Res. 6, 1052–1062.

    Article  PubMed  CAS  Google Scholar 

  42. Hartner, F.S., Ruth, C., Langenegger, D., et al. (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res. 36, e76.

    Article  PubMed  CAS  Google Scholar 

  43. Shen, S., Sulter, G., Jeffries, T.W., and Cregg, J.M. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102.

    Article  PubMed  CAS  Google Scholar 

  44. Resina, D., Serrano, A., Valero, F., and Ferrer, P. (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J. Biotechnol. 109, 103–113.

    Article  PubMed  CAS  Google Scholar 

  45. Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., and Cregg, J.M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.

    Article  PubMed  CAS  Google Scholar 

  46. Hollenberg, C.P., and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560.

    Article  PubMed  CAS  Google Scholar 

  47. De Schutter, K., Lin, Y.C., Tiels, P., et al. (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat. Biotechnol. 27, 561–566.

    Article  PubMed  CAS  Google Scholar 

  48. Mattanovich, D., Graf, A., Stadlmann, J., et al. (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb. Cell. Fact. 8, 29.

    Article  PubMed  CAS  Google Scholar 

  49. Ramezani-Rad, M., Hollenberg, C.P., Lauber, J., et al. (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 4, 207–215.

    Article  PubMed  CAS  Google Scholar 

  50. Burgers, P.M., and Percival, K.J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.

    Article  PubMed  CAS  Google Scholar 

  51. Gietz, R.D., and Woods, R.A. (2002) Trans-formation of Yeast by the LiAc/ss Carrier DNA/PEG. Method. Meth. in Enzymol. 350, 87–96.

    Article  CAS  Google Scholar 

  52. Sanchez, M., Iglesias, F.J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environm. Microbiol. 59, 2087–2092.

    CAS  Google Scholar 

  53. Goffeau, A., Barrell, B.G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 563–547.

    Article  Google Scholar 

  54. Bergkamp, R.J., Kool, I.M., Geerse, R.H., and Planta, R.J. (1992) Multiple-copy integration of the alpha-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr. Genet. 21, 365–370.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, B., Gong, X., Chang, S., et al. (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 143, 95–102.

    Article  PubMed  CAS  Google Scholar 

  56. Dujon, B., Sherman, D., Fischer, G., et al. (2004) Genome evolution in yeasts. Nature 430, 35–44.

    Article  PubMed  Google Scholar 

  57. Klabunde, J., Kunze, G., Gellissen, G., and Hollenberg, C.P. (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res. 4, 185–193.

    Article  PubMed  CAS  Google Scholar 

  58. Jeffries, T., Grigoriev, I., Grimwood, J., et al. (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25, 319–326.

    Article  PubMed  CAS  Google Scholar 

  59. Le Dall, M.T., Nicaud, J.M., and Gaillardin, C. (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr. Genet. 26, 38–44.

    Article  PubMed  Google Scholar 

  60. Song, Y., Choi, M.H., Park, J.N., Kim, M.W., Kim, E.J., Kang, H.A. and Kim, J.Y. (2007) Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl. Environ. Microbiol. 73, 4446–4454.

    Article  PubMed  CAS  Google Scholar 

  61. Wartmann, T., and Kunze, G. (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54, 619–624.

    Article  PubMed  CAS  Google Scholar 

  62. Marx, H., Mecklenbräuker, A., Gasser, B., Sauer, M., and Mattanovich, D. (2009) Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus. FEMS Yeast Res. 9, 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  63. Hamilton, S., and Gerngross, T. (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18, 387–392.

    Article  PubMed  CAS  Google Scholar 

  64. Cox, H., Mead, D., Sudbery, P., Eland, R.M., Mannazzu, I., and Evans, L. (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16, 1191–1203.

    Article  PubMed  CAS  Google Scholar 

  65. Oh, D.B., Park, J.S., Kim, M.W., et al. (2008) Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol. J. 3, 659–668.

    Article  PubMed  CAS  Google Scholar 

  66. Hasslacher, M., Schall, M., Hayn, M., et al. (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 11, 61–71.

    Article  PubMed  CAS  Google Scholar 

  67. Clare, J,J,, Rayment, F.B., Ballantine, S.P., Sreekrishna, K., and Romanos, M.A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.

    Google Scholar 

  68. Richardson, P.T., Roberts, L.M., Gould, J.H., and Lord, J.M. (1988) The expression of functional ricin B-chain in Saccharomyces cerevisiae. Biochim. Biophys. Acta 950, 385–394.

    Article  PubMed  CAS  Google Scholar 

  69. Binder, M., Schanz, M., and Hartig, A. (1991) Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur. J. Cell Biol. 54, 305–312.

    PubMed  CAS  Google Scholar 

  70. Choi, S.Y., Lee, S.Y., and Bock, R.M. (1993) High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylyalanyl-lysine. J. Biotechnol. 30, 211–223.

    Article  PubMed  CAS  Google Scholar 

  71. Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998) Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387–388.

    Article  PubMed  CAS  Google Scholar 

  72. Idiris, A., Tohda, H., Kumagai, H., and Takegawa, K. (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86, 403–417.

    Article  PubMed  CAS  Google Scholar 

  73. Barr, K.A., Hopkins, S.A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.

    Google Scholar 

  74. Kauffman, K.J., Pridgen, E.M., Doyle, F.J. 3rd, Dhurjati, P.S., and Robinson, A.S. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol. Prog. 18, 942–950.

    Article  PubMed  CAS  Google Scholar 

  75. Hohenblum, H., Borth, N., and Mattanovich, D. (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102, 281–290.

    Article  PubMed  CAS  Google Scholar 

  76. Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng. 85, 367–375.

    Article  PubMed  CAS  Google Scholar 

  77. Kohno, K. (2010) Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J. Biochem. 147, 27–33.

    Article  PubMed  CAS  Google Scholar 

  78. Mori, K. (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146, 743–750.

    Article  PubMed  CAS  Google Scholar 

  79. Gasser, B., Saloheimo, M., Rinas, U., et al. (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell. Fact. 7, 11.

    Article  PubMed  CAS  Google Scholar 

  80. Valkonen, M., Penttila, M., and Saloheimo, M. (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  81. Gasser, B., Maurer, M., Gach, J., Kunert, R., and Mattanovich, D. (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol. Bioeng. 94, 353–361.

    Article  PubMed  CAS  Google Scholar 

  82. Pakula, T.M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., and Penttila, M. (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278, 45011–45020.

    CAS  Google Scholar 

  83. Swaim, C., Anton, B., Sharma, S., Taron, C., and Benner, J. (2008) Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. Proteomics 8, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  84. Vai, M., Brambilla, L., Orlandi, I., Rota, N., Ranzi, B.M., Alberghina, L., and Porro, D. (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66, 5477–5479.

    Article  PubMed  CAS  Google Scholar 

  85. Marx, H., Sauer, M., Resina, D., et al. (2006) Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol. Lett. 264, 40–47.

    Article  PubMed  CAS  Google Scholar 

  86. Passolunghi, S., Riboldi, L., Dato, L., Porro, D., and Branduardi, P. (2010) Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb. Cell. Fact. 9, 7.

    Article  PubMed  CAS  Google Scholar 

  87. Resina, D., Maurer, M., Cos, O., et al. (2009) Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. N. Biotechnol. 25, 396–403.

    Article  PubMed  CAS  Google Scholar 

  88. Gemmill, T.R., and Trimble, R.B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta. 1426, 227–237.

    Article  PubMed  CAS  Google Scholar 

  89. Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.

    Article  PubMed  CAS  Google Scholar 

  90. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J., and Jigami, Y. (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 11, 2511–2519.

    PubMed  CAS  Google Scholar 

  91. Zhou, J., Zhang, H., Liu, X., Wang, P.G., and Qi, Q. (2007) Influence of N-glycosylation on Saccharomyces cerevisiae morphology: a golgi glycosylation mutant shows cell division defects. Curr. Microbiol. 55, 198–204.

    Article  PubMed  CAS  Google Scholar 

  92. Jacobs, P.P., Geysens, S., Vervecken, W., Contreras, R., and Callewaert, N. (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat. Protoc. 4, 58–70.

    Article  PubMed  CAS  Google Scholar 

  93. Wildt, S., and Gerngross, T.U. (2005) The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3, 119–128.

    Article  PubMed  CAS  Google Scholar 

  94. Chiba, Y., and Akeboshi, H. (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol. Pharm. Bull. 32, 786–795.

    Article  PubMed  CAS  Google Scholar 

  95. De Pourcq, K., De Schutter, K., and Callewaert, N. (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87, 1617–1631.

    Article  PubMed  CAS  Google Scholar 

  96. Potgieter, T.I., Cukan, M., Drummond, J.E., et al. (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J. Biotechnol. 139, 318–325.

    Article  PubMed  CAS  Google Scholar 

  97. Goto, M. (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem. 71, 1415–1427.

    Article  PubMed  CAS  Google Scholar 

  98. Chigira, Y., Oka, T., Okajima, T., and Jigami, Y. (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccha-romyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18, 303–314.

    Article  PubMed  CAS  Google Scholar 

  99. Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura, T., and Yokoyama, K. (1999) Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8, 195–200.

    CAS  Google Scholar 

  100. Westerhoff, H., and Palsson, B. (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249–1252.

    Article  PubMed  CAS  Google Scholar 

  101. Olivares-Hernandez, R., Usaite, R., and Nielsen, J. (2010) Integrative analysis using proteome and transcriptome data from yeast to unravel regulatory patterns at post-transcriptional level. Biotechnol. Bioeng. doi: 10.1002/bit.22868.

    Google Scholar 

  102. Zhang, J., Vemuri, G., and Nielsen, J. (2010) Systems biology of energy homeostasis in yeast. Curr. Opin. Microbiol. 13, 382–388.

    Article  PubMed  CAS  Google Scholar 

  103. Han, M., Lee, J., Lee, S., and Yoo, J. (2008) Proteome-level responses of Escherichia coli to long-chain fatty acids and use of fatty acid inducible promoter in protein production. J. Biomed. Biotechnol. 2008, 735101.

    Article  PubMed  CAS  Google Scholar 

  104. Fürch, T., Wittmann, C., Wang, W., Franco-Lara, E., Jahn, D., and Deckwer, W. (2007) Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. J. Biotechnol. 132, 385–394.

    Article  PubMed  CAS  Google Scholar 

  105. Wang, Y., Xue, W., Sims, A.H., et al. (2008) Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal. Genet. Biol. 45, 17–27.

    Article  PubMed  CAS  Google Scholar 

  106. Kimura, S., Maruyama, J., Takeuchi, M., and Kitamoto, K. (2008) Monitoring global gene expression of proteases and improvement of human lysozyme production in the nptB gene disruptant of Aspergillus oryzae. Biosci Biotechnol Biochem 72, 499–505.

    Article  PubMed  CAS  Google Scholar 

  107. Wong, D., Wong, K., Nissom, P., Heng, C., and Yap, M. (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol. Bioeng. 95, 350–361.

    Article  PubMed  CAS  Google Scholar 

  108. Pizarro, F., Vargas, F., and Agosin, E. (2007) A systems biology perspective of wine fermentations. Yeast 24, 977–991.

    Article  PubMed  CAS  Google Scholar 

  109. Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., and Huthmacher, K. (2007) Systems biology for industrial strains and fermentation processes--example: amino acids. J. Biotechnol. 129, 181–190.

    Article  PubMed  CAS  Google Scholar 

  110. Mukhopadhyay, A., Redding, A., Rutherford, B., and Keasling, J. (2008) Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19, 228–234.

    Article  PubMed  CAS  Google Scholar 

  111. Graf, A., Dragosits, M., Gasser, B., and Mattanovich, D. (2009) Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res. 9, 335–348.

    Article  PubMed  CAS  Google Scholar 

  112. Sauer, M., Branduardi, P., Gasser, B., Valli, M., Maurer, M., Porro, D., and Mattanovich, D. (2004) Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microb. Cell. Fact. 3, 17.

    Article  PubMed  CAS  Google Scholar 

  113. Gasser, B., Maurer, M., Rautio, J., et al. (2007) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 8, 179.

    Article  PubMed  CAS  Google Scholar 

  114. Dragosits, M., Stadlmann, J., Albiol, J., et al. (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J. Proteome Res. 8, 1380–1392.

    Article  PubMed  CAS  Google Scholar 

  115. Dragosits, M., Stadlmann, J., Graf, A., et al. (2010) The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11, 207.

    Article  PubMed  CAS  Google Scholar 

  116. Gonzalez, R., Andrews, B., Molitor, J., and Asenjo, J. (2003) Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol. Bioeng. 82, 152–169.

    Article  PubMed  CAS  Google Scholar 

  117. Heyland, J., Fu, J., Blank, L.M., and Schmid, A. (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol. Bioeng. 107, 357–368.

    Article  PubMed  CAS  Google Scholar 

  118. Gasser, B., Sauer, M., Maurer, M., Stadlmayr, G. and Mattanovich, D. (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl. Environ. Microbiol. 73: 6499–6507.

    Article  PubMed  CAS  Google Scholar 

  119. Dragosits, M., Frascotti, G., Bernard-Granger, L., et al (2010) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis, Biotechnology Progress, accepted for publication.

    Google Scholar 

  120. Mattanovich, D., Gasser, B., Hohenblum, H., and Sauer, M. (2004) Stress in recombinant protein producing yeasts. J. Biotechnol. 113, 121–135.

    Article  PubMed  CAS  Google Scholar 

  121. van Zutphen, T., Baerends, R.J., Susanna, K.A., de Jong, A., Kuipers, O.P., Veenhuis, M., and van der Klei, I.J. (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11, 1.

    Article  PubMed  CAS  Google Scholar 

  122. Solà, A., Maaheimo, H., Ylönen, K., Ferrer, P. and Szyperski, T. (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur. J. Biochem. 271, 2462–2470.

    Article  PubMed  CAS  Google Scholar 

  123. Solà, A., Jouhten, P., Maaheimo, H., Sánchez-Ferrando, F., Szyperski, T. and Ferrer, P. (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153, 281–290.

    Article  PubMed  CAS  Google Scholar 

  124. Rautio, J.J., Kataja, K., Satokari, R., Penttila, M., Soderlund, H., and Saloheimo, M. (2006) Rapid and multiplexed transcript analysis of microbial cultures using capillary electophoresis-detectable oligonucleotide probe pools. J. Microbiol. Methods. 65, 404–416.

    Article  PubMed  CAS  Google Scholar 

  125. Weik, R., Striedner, G., Francky, A., Raspor, P., Bayer, K., and Mattanovich, D. (1999) Induction of oxidofermentative ethanol formation in recombinant cells of Saccharomyces cerevisiae yeasts. Food Technol. Biotechnol. 37, 191–194.

    CAS  Google Scholar 

  126. Hong, F., Meinander, N.Q. and Jonsson, L.J. (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.

    Article  PubMed  CAS  Google Scholar 

  127. Zhang, W., Smith, L.A., Plantz, B.A., Schlegel, V.L., and Meagher, M.M. (2002) Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnol Prog. 18, 1392–1399.

    Article  PubMed  CAS  Google Scholar 

  128. Jahic, M., Veide, A., Charoenrat,T., Teeri, T., and Enfors, S.O. (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol. Prog. 22, 1465–1473.

    PubMed  CAS  Google Scholar 

  129. Kim, S.J., Lee, J.A., Kim, Y.H., and Song, B.K. (2009) Optimization of the functional expression of Coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter. J. Microbiol. Biotechnol. 19, 966–971.

    Article  PubMed  CAS  Google Scholar 

  130. Pla, I.A., Damasceno, L.M., Vannelli, T., Ritter, G., Batt, C.A., and Shuler, M.L. (2006) Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol. Prog. 22, 881–888.

    Article  PubMed  CAS  Google Scholar 

  131. d’Anjou, M.C., and Daugulis, A.J. (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72, 1–11.

    Google Scholar 

  132. Jungo, C., Marison, I., and von Stockar, U. (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. J. Biotechnol. 128, 824–837.

    Article  PubMed  CAS  Google Scholar 

  133. Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., and Tomomitsu, K. (2000) High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J. Biosci. Bioeng. 90, 280–288.

    PubMed  CAS  Google Scholar 

  134. Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R., and Wandrey, C. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17, 495–502.

    Article  PubMed  CAS  Google Scholar 

  135. Maurer, M., Kuhleitner, M., Gasser, B., and Mattanovich, D. (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb. Cell Fact. 5, 37.

    Article  PubMed  CAS  Google Scholar 

  136. Potgieter, T.I., Kersey, S.D., Mallem, M.R., Nylen, A.C., and d’Anjou, M. (2010) Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol. Bioeng. 106, 918–927.

    Google Scholar 

  137. Goodey, A.R. (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11, 430–433.

    Article  PubMed  CAS  Google Scholar 

  138. Porro, D., Martegani, E., Ranzi, B.M., and Alberghina, L. (1991) Heterologous gene expression in continuous cultures of budding yeast. Appl. Microbiol. Biotechnol. 34, 632–636.

    Article  PubMed  CAS  Google Scholar 

  139. Stephanopoulos, G., Aristodou, A., and Nielsen, J. (1998) Metabolic engineering. Academic Press, Inc., San Diego, Calif.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT through the Austrian FFG-COMET- Funding Program and by FAR 2010 to DP and SYSINBIO to PB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Porro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mattanovich, D., Branduardi, P., Dato, L., Gasser, B., Sauer, M., Porro, D. (2012). Recombinant Protein Production in Yeasts. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics